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Abstract

Let R be an algebraically closed field and ℓ be its characteristic. Let G be a locally
profinite group having a compact open subgroup of invertible pro-order in R. Take N a
closed subgroup of G exhausted by compact subgroups of invertible pro-orders in R and
fix a smooth character θ of N . For π an irreducible smooth R-representation of G whose
matrix coefficients are compactly supported modulo the center (we call it Z-compact), we
show that the dimensions HomN (π, θ) and HomN (π∨, θ−1) are equal provided one of the
two is finite. We derive a few applications from this result. First, we prove that any G-
intertwiner from π to IndGN (θ) has image in indG

ZN (ωπθ), where ωπ is the central character
of π, and the Whittaker space of π agrees with that of its Whittaker periods. Second,
it applies to quasi-split groups over non Archimedean local fields of residual characteristic
p ̸= ℓ and where N is the unipotent radical of a Borel subgroup of G together with a generic
character θ. Our equality of dimensions turns out to be a good replacement for Rodier’s
crucial use of complex conjugation in the proof of Whittaker multiplicity at most one for
cuspidal representations. Then by a lifting argument, we recover Rodier’s generalization of
the Gelfand-Kazhdan property for R-valued (θ−1 ⊗ θ)-equivariant distributions on G. This
latter fact, together with Rodier’s heridity property, which is valid in our context, leads to
the multiplicity at most one of Whittaker functionals over R. We also give other applications,
including a generalization over R of a result for complex representations proved by Chang
Yang and initially conjectured by Dipendra Prasad.

1 Introduction
Let F be a non Archimedean local field of residual characteristic p and let G = G(F ) be
the F -points of a quasi-split reductive group G over F . Fix a Borel subgroup of G and
call N its unipotent radical. Let R be an algebraically closed field of characteristic ℓ ̸= p.
Choose as well a non-degenerate character θ of N . Over R = C, the multiplicity at most
one of Whittaker functionals proved by Rodier in [12], following Gelfand-Kazhdan [9] for
G = GLn(F ) asserts that for all irreducible (admissible) complex representations π of G,
the dimension of HomN (π, θ) satisfies:

dθ(π) ∈ {0, 1}.

The proof of this statement can be divided into three intermediate steps. Writing π∨ for
the contragredient of π, it breaks down as:

(1) proving an inequality dθ(π)× dθ−1(π∨) ⩽ 1 for all irreducible π;

(2) showing that dθ(π) = dθ−1(π∨) when π is cuspidal;

(3) using the so-called heredity property to extend the above equality to all irreducible
representations.

Note that in [11, Lem 2] Prasad proves (2) for all irreducible representations by reducing
to the tempered case, but in all cases the arguments rely on the fact that for unitary
representations one has π∨ ≃ cπ where cπ is the complex conjugate of π. Clearly this latter
argument depends on specific properties of C. However, Point (3) generalizes in a rather
straightforward way to any coefficient field, and so does Point (1) as long as the characteristic
of R is not 2. In order to avoid this annoying restriction on the characteristic, we prefer to

1



deduce Point (1) by lifting (θ−1 ⊗ θ)-equivariant distributions from positive characteristic
fields to characteristic zero ones. Let Iθ be the Rodier involution of G defined in Section 4,
which in the case of GLn(F ) is the transpose inverse composed with the conjugation by the
antidiagonal matrix with all entries equal to one on the second diagonal. Our method, based
on the rather general lifting result from Lemma 2.4 from residue fields to discrete valuation
rings, allows us to prove in Proposition 4.2 that any (θ−1 ⊗ θ)-equivariant distributions on
G with values in R is invariant under the Rodier anti-involution g 7→ Iθ(g

−1).
The main obstacle we need to overcome is point (2). Our argument is elementary and

possibly well known to some experts. It is valid in the much more general setting of locally
profinite groups and applies to Z-compact irreducible representations π of such groups G
admitting a compact open subgroup of invertible pro-order in R. TakingN a closed subgroup
of G exhausted by compact subgroups of invertible pro-orders in R and fixing a smooth
character θ of N , we prove that the dimension dθ(π) of HomN (π, θ) is finite if and only if
the dimension dθ−1(π∨) of HomN (π∨, θ−1) is finite as well, in which case:

dθ(π) = dθ−1(π∨).

For quasi-split groups G = G(F ) as above, an irreducible cuspidal representation is always
Z-compact, so point (2) is a direct consequence of our result.

We derive two main applications from our result. First, Chang Yang [14] recently proved
a conjecture of Dipendra Prasad [11] saying that, for G quasi-split as above, all irreducible
complex θ-generic representations π of G satisy π∨ ≃ π◦Iθ. The main argument in the proof
is generalizing Gelfand and Kazhdan [9] and is a consequence of the invariance of (θ−1⊗R θ)-
equivariant distibutions by Iθ. In the course of generalizing Rodier’s result on these distri-
butions, we remarked that Yang’s proof is valid over R. As a second application, we simply
observe that our groups G are quite general: in Section 6 we replace them by Kazhdan-
Patterson metaplectic covers of GLn(F ) to obtain some information about the multiplicity
of their Whittaker models. Nevertheless, our Section 7 explains how a more direct approach
is also fruitful in the context of ℓ-modular representations i.e. when R = Fℓ. In particular we
recover most of the applications above by a simple reduction argument from Qℓ-coefficients
to Fℓ-coefficients. The only drawback here comes from the use of Proposition 7.1 which is
proved in the forthcoming work [6] and relies on techniques that extend far beyond the usual
representation theoretic methods as it requires some deep results of Fargues and Scholze.
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Shaun Stevens for useful conversations and correspondence. Also we are greatly indebted
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accurate reading, and their useful comments and suggestions, leading to the clarification
of some arguments. The first named author would like to thank the CNRS and Imperial
college London for giving him respectively a délégation and an ICL-CNRS felowship in 2022,
and the Erwin-Schrödinger institute for funding the Research in Teams Project: l-modular
Langlands Quotient Theorem and Applications. This work benefited from the hospitality
of the aforementioned institutions, as well as from IMJ-PRG where the second author is
grateful to have been invited.

2 Preliminary results
Let R be a commutative unitary ring. For a locally profinite group G, we denote by RepR(G)
the category of smooth R[G]-modules. When H is a closed subgroup of the locally profinite
groupG, we have the two (non-normalized) induction functors indG

H and IndG
H from RepR(H)

to RepR(G). Let χ : H → R× be a smooth character.

Coinvariants. The functor of χ-coinvariants associates to V ∈ RepR(H) the module:

Vχ = V/V [χ] ∈ RepR(H)

where:
V [χ] = ⟨h · v − χ(h)v | h ∈ H and v ∈ V ⟩.
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Let R′ be a commutative R-algebra, and χR′ be the composition of χ with the ring
morphism R→ R′. The χ-coinvariants fit into an exact sequence 0 → V [χ] → V → Vχ → 0
and applying the functor −⊗R R

′ to it, we obtain V [χ]⊗R R
′ → V ⊗R R

′ → Vχ ⊗R R
′ → 0

by right exactness. The image of V [χ]⊗R R
′ → V ⊗R R

′ actually is (V ⊗R R
′)[χR′ ] so:

Lemma 2.1. Let R′ be a commutative R-algebra. Then the map V ⊗RR
′ → Vχ⊗RR

′ above
induces a canonical identification between (V ⊗R R

′)χR′ and Vχ ⊗R R
′.

The following classical fact [13, I.4.11] asserts that it is exact in an important situation:

Lemma 2.2. When H = N is exhausted by compact subgroups of invertible pro-order in R,
the functor of χ-coinvariants V 7→ Vχ is exact.

The proof of Lemma 2.2 is a consequence of the following description of V [χ] due to
Jacquet and Langlands: a vector v belongs to V [χ] if and only if there is a compact open
subgroup K of N such that eχ,K(v) = 0 where:

eχ,K(v) =

∫
K

χ−1(n) (n · v) dn.

From this description and Lemma 2.1, we deduce a useful lifting result for χ-equivariant
linear forms. First we state the following preliminary general lemma, the proof of which
benefited from clarifications of Guy Henniart.

Lemma 2.3. Let M be a module over an integral domain B with fraction field L. Then it
has a decomposition M = M1 ⊕M2, where M1 is the maximal L-vector space contained in
M , and M2 does not contain any L-line.

Proof. First the existence of M1 is given by Zorn’s Lemma. Then we have the chain
HomB(−,M1) ≃ HomB(−,HomL(L,M1)) ≃ HomL(−⊗B L,M1), where the second isomor-
phism is the tensor-hom adjunction whereas the first holds because HomL(L,−) identifies
with the identity functor on the category of L-vector spaces. Now using the general property
of fraction fields that L is B-flat, and that M1 is injective as an L-vector space, we deduce
that the functor HomB(−,M1) is exact. In particular M1 is injective over B, hence it has
a complement M2 inside M . If such a complement was to contain a line D, then M1 ⊕D
would be an L-vector space contained in M , contradicting the maximality of M1.

We can now prove our lifting result.

Lemma 2.4. Let A be a complete discrete valuation ring, denote by K its fraction field and
by k its residue field. Assume that H = N is exhausted by compact subgroups of invertible
pro-order in A and let V ∈ RepA(N) be a torsion free A-module such that V ⊗A K has
countable dimension. Then for all T ∈ HomN (V ⊗A k, χk) there exists T̃ ∈ HomN (V, χ)
reducing to T over k.

Proof. Set V K = V ⊗AK and V k = V ⊗A k. As V is torsion free over A, it embeds as an A-
submodule of V K via the map v 7→ v⊗A 1. We claim that V [χ] = V ∩V K[χK]: the inclusion
V [χ] ⊆ V ∩V K[χK] is obvious, and if v ∈ V ∩V K[χK] it satisfies that eχ,K(v) = eχK,K(v) = 0
for some large enough K, and we conclude v ∈ V [χ]. Hence the injection of V into V K

induces an embedding Vχ ↪→ V K
χK

. We can now apply Lemma 2.3 to M = Vχ and B = A,
giving rise to a decomposition Vχ = Vχ,1 ⊕ Vχ,2. Thus the A-module Vχ,2 does not contain
any K-line and Vχ,2 ⊗A K is of countable dimension by hypothesis. Because A is principal,
local and complete, we deduce from [13, I.9.2 & App C.5] that Vχ,2 is free over A. Moreover
Vχ ⊗A k = Vχ,2 ⊗A k because Vχ,1 ⊗A k = 0 and the tensor product preserves direct sums.
The linear form T ′ in Homk(V

k
χk
, k) corresponding to T via the canonical isomorphism

HomN (V k, χk) ≃ Homk(V
k
χk
, k) lifts to an element T̃ ′

2 ∈ HomA(Vχ,2,A) because Vχ,2 is free
over A. However HomA(Vχ,2,A) identifies with the A-submodule of HomA(Vχ,A) consisting
of linear forms vanishing on Vχ,1, so we can see T̃ ′

2 as a linear form T̃ ′ ∈ HomA(Vχ,A).
Finally we just take T̃ ∈ HomN (V, χ) to be the equivariant linear map corresponding to T̃ ′

via the canonical identification HomN (V, χ) ≃ HomA(Vχ,A).
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Coinvariants of the regular representation. We denote by C∞
c (G) the space of

locally constant and compactly supported functions on G with values in R. It is a smooth
(G × G)-module for the action ((λ ⊗ ρ)(g, g′)f)(x) = f(g−1xg′). Let H be a unimodular
closed subgroup of G containing an open compact subgroup of invertible pro-order in R, so
that there exists a right invariant Haar measure µ on H with values in R. In general all our
Haar measures are assumed to be normalized on a compact open subgroup. Let χ : H → R×

be a smooth character.

Lemma 2.5. The map:

pH,χ : C∞
c (G) → indG

H(χ)
f 7→ pH,χf

where pH,χf(g) =

∫
H

χ−1(h)f(hg)dh

defines a surjective (H × G)-equivariant map from C∞
c (G) to indG

H(χ). Furthemore, this
morphism factors through an (H ×G)-equivariant isomorphism:

C∞
c (G)λ,χ−1 ≃ indG

H(χ)

where the index indicates that the coinvariants are taken with respect to the action of λ.

Proof. The first part is proved in [1, App B.1], and when R is a field the second part also
follows easily from [1, App B.1] using the fact that linear forms separate points of a vector
space. However the following short argument works in full generality. It was given to us by
Guy Henniart. First observe that in the proof of [1, Lem B.4 (i)], the linear form L can
be replaced by any R-linear map with values in an R-module M . Taking M = C∞

c (G)λ,χ−1

shows that the kernel of pH,χ is equal to C∞
c (G)λ[χ] and the result follows.

As an immediate consequence of this result we deduce the second part of the following
corollary, the first one being the integration in stages formula:

Corollary 2.6. If H ′ is a closed subgroup of H, together with their respective Haar measures,
there exists a (unique) Haar measure on H ′\H, such that the map pH,χ : C∞

c (G) ↠ indG
H(χ)

factors through:

qH,H′ : indG
H′(χ) ↠ indG

H(χ)

f 7→
∫
H′\H

χ−1(h)pH,χf(hg)dh
.

In particular pH,χ = qH,H′ ◦ pH′,χ and qH,H′ is (H ′ × G)-equivariant. Moreover if H ′ is
normal in G, then indG

H′(χ) is naturally a left H-module and the morphism qH,H′ induces
an (H ×G)-isomorphism indG

H′(χ)λ,χ−1 ≃ indG
H(χ).

3 Duality and Whittaker functionals
Let G be a locally profinite group with center Z. Let R be an algebraiclly closed field
such that G has an open compact subgroup of invertible pro-order in R. We recall that an
irreducible π in RepR(G) is said to be Z-compact if all of its matrix coefficients have com-
pact support modulo Z. Such representations are admissible and admit central characters
[13, I.7.11 Prop]. In particular the contragredient π∨ of an irreducible Z-compact represen-
tation π is itself Z-compact and irreducible. Denoting by ωπ the central character of π, we
have a (G×G)-morphism for the action induced by λ⊗ ρ on indGZ (ωπ):

π∨ ⊗R π ↪
c−−−−→ indG

Z (ωπ)

where the image c(v∨ ⊗R v) is the coefficient g 7→ v∨(π(g)v) of π. The representation on
the left-hand side is an irreducible (G × G)-module by a straightforward generalization of
[8, Th 1] to our setting, so this arrow is indeed injective.

Proposition 3.1. Let π be an irreducible Z-compact representation in RepR(G) and θ be
a character of a subgroup N exhausted by compact subgroups of invertible pro-orders in R.
Assume that ωπ agrees with θ on Z∩N so that [ωπθ](zn) = ωπ(z)θ(n) is a character of ZN .
Then the coefficient map above induces an (N ×G)-morphim:

(π∨)θ−1 ⊗R π ↪
cθ−1−−−−→ indG

ZN ([ωπθ]).
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Proof. Note that Z is a normal subgroup of ZN and that both groups are unimodular. As a
result of Corollary 2.6, we have a surjective (ZN ×G)-morphism indG

Z (ωπ) ↠ indG
ZN ([ωπθ])

identifying with θ−1-coinvariants for λ. By Lemma 2.2, the θ-coinvariants are exact so we
have an injection (π∨)θ−1 ⊗R π ↪→ indG

ZN ([ωπθ]).

Remark 3.2. When G is reductive, N is the unipotent radical of a minimal parabolic
subgroup of G, and θ is non-degenerate, the inclusion π ↪→ indG

ZN ([ωπθ]) when π is cuspidal
is proved for complex representations in [4, Cor 6.5], using a different method. In this
situation, a converse statement also holds thanks to [7, Th 10].

Our main result on Whittaker multiplicities is a simple consequence of this result. Note
that dim(πθ) and dim(HomN (π, θ)) are equal when one of the two is finite. Set:

dθ(π) := dim(HomN (π, θ)).

Theorem 3.3. Let π ∈ RepR(G) be irreducible Z-compact. Then dθ−1(π∨) is finite if and
only if dθ(π) is finite as well, in which case:

dθ−1(π∨) = dθ(π).

Proof. The vector space HomG(π, IndG
N (θ)) has dimension dθ(π) by Frobenius reciprocity,

i.e. dθ(π) = dim(πθ), but as it contains HomG(π, indG
ZN ([ωπθ])) its dimension is at least

dim((π∨)θ−1) thanks to Proposition 3.1. So dθ(π) ⩾ dim((π∨)θ−1). Now a similar reverse
inequality holds because π is admissible so (π∨)∨ ≃ π. It gives dθ−1(π∨) ⩾ dim(πθ), where
by definition dθ−1(π∨) := dim(HomN (π∨, θ−1)) = dim((π∨)θ−1).

As a reminder of the proof of Propisition 3.1, we sketch the commutative diagram:

π∨ ⊗R π

����

� � c // indG
Z (ωπ)

����
π∨
θ−1 ⊗R π

� � cθ−1 // indG
ZN ([ωπθ])

� � // IndG
N (θ)

where according to Corollary 2.6 the composition:

π∨ ⊗R π −→ indG
ZN ([ωπθ])

actually is the map associating to v∨ ⊗ v the function:

Wv∨,v : g 7→
∫
Z\ZN

θ−1(n)cv∨,v(ng)dn.

Suppose moreover that dθ(π) is finite, then Theorem 3.2 implies that the image of the
composition of the two bottom arrows is the π-isotypic component of IndG

N (θ). Hence:

HomG(π, Ind
G
N (θ)) = HomG(π, ind

G
ZN ([ωπθ]) = {v 7→Wv∨,v, v

∨ ∈ V ∨}.

Define for v∨ ∈ π∨ the Whittaker period Wv∨ ∈ HomN (π, θ) on π attached to v∨:

Wv∨ : v 7→
∫
Z\ZN

θ−1(n)cv∨,v(n)dn.

A consquence of the above discussion and of Frobenius reciprocity is the following.

Corollary 3.4. Let π be an irreducible Z-compact admissible representation of G. Suppose
that dθ(π) is finite. Then any Whittaker model of π lies inside indG

ZN ([ωπθ]) and moreover
the Whittaker space of π is equal to that of its Whittaker periods:

HomN (π, θ) = {Wv∨ | v∨ ∈ π∨}.
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4 Multiplicity at most one for Whittaker functionals
Now let F be a non Archimedean local field of residual characteristic p and G be the group of
F -points of a quasisplit reductive group over F . We moreover suppose that R is algebraically
closed of characteristic ℓ ̸= p. We fix a maximal F -split torus T of G, as well as a Borel
subgroup B containing T with unipotent radical N . This in particular fixes a set of simple
roots ∆ of T and a longest Weyl element w0 in the Weyl group W (G,T ). We fix a non-
trivial character ψ : F → R, as well as a non-degenerate character θ : N → F . This means
that for all α ∈ ∆ the restriction of θ to the root subgroup of α is non-trivial. Let Nab be
the abelianization of N . We have a canonical isomorphism Hom(N,R×) ≃ Hom(Nab, R×)
for smooth characters, which we denote by µ 7→ µ. Now by [3] we can endow Nab with a
structure of finite dimensional F -vector space, with basis ∆. Hence by Pontryagin duality
the map Φ 7→ ψ ◦ Φ gives an isomorphism HomF (N

ab, F ) ≃ Hom(Nab, R×). In particular
θ = ψ ◦ Θ for a unique Θ ∈ HomF (N

ab, F ), and we set Θ to be its composition with
N → Nab. According to [12, Prop 5], there exists a unique automorphism Iθ of the group
G satisfying:

• Iθ(N) = N ;

• Θ ◦ Iθ = Θ−1;

• Iθ(t) = w0t
−1w0 for all t ∈ T .

In addition this is an involution i.e. I2θ = Id. Let Aθ be the anti-involution of G defined by:

Aθ(g) = Iθ(g
−1) for g ∈ G.

Uniqueness of Whittaker models. The main goal of this section is to explain how
Rodier’s proof can be generalized to representations with coefficients in R. We show that
points (1)-(2)-(3) from the introduction hold over R. This is also known as the uniqueness
of Whittaker models:

Theorem 4.1. Let π ∈ RepR(G) be irreducible. Then:

dθ(π) ⩽ 1.

4.1 Inequality (1)
We generalize the key result [12, Prop 9] over R.

Proposition 4.2. All θ−1 ⊗ θ-equivariant distributions on C∞
c (G) are invariant under Aθ.

Proof. Over R = C this is [12, Prop 9]. The proof of Rodier is valid in characteristic zero,
and in fact in characteristic different from 2 (the argument uses at the end that T = −T
implies T = 0 for a distribution T ). Hence to deduce the result above from the characteristic
zero case, we use the lifting result of Lemma 2.4 with k = R, its Witt vectors A = W (R),
the representation V = C∞

c (G,W (R)), the group H = N×N and the character χ = θ̃−1⊗ θ̃
for θ̃ lifting θ to W (R). Note that V is torsion free as an A-module [13, App C.5] and is
contained in C∞

c (G,K) whose dimension is countable over K = Frac(A). Also a distribution
T̃ ∈ HomN (V, θ̃−1⊗ θ̃) naturally extend to a distribution over K, implying the Aθ-invariance
of T̃ and its reduction as well.

The proofs of [12, Prop 10 & Prop 11] then apply verbatim over R and Rodier deduces
following the argument of Gelfand and Kazhdan ([9]) the inequality below for complex
representations [12, Prop 11]. Note that by [13], irreducible representations of G are always
admissible so we remove the term admissible from the statement below.

Theorem 4.3. Let π ∈ RepR(G) be irreducible. Then:

dθ(π)× dθ−1(π∨) ⩽ 1.
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4.2 Equality (2) in the cuspidal case
As mentioned in the introduction, the contragredient π∨ of a irreducible complex unitary rep-
resentation π is equal to its complex conjugate: π∨ ≃ cπ. Complex cuspidal representations
are unitarisable i.e. unitary up to a twist by a character, and both [12, Prop 13] and [11, Lem
2] rely on this specific property of unitary representations to prove dθ(π) = dθ−1(π∨) for irre-
ducible complex representations. Our Theorem 3.3 overcomes the absence of this unitarian
trick in the setting of cuspidal (or equivalently Z-compact [13, II.2.7]) R-representations:

Theorem 4.4. Let π ∈ RepR(G) be irreducible cuspidal. Then:

dθ(π) = dθ−1(π∨).

4.3 Rodier’s heredity property (3)
Let P = MU be a standard parabolic subgroup of G and let τ ∈ RepR(M) be irreducible.
We denote by iGP the parabolic induction (non-normalized) functor. Set NM =M∩w0Nw

−1
0

and define a character θM by θM (n) = θ(w−1
0 nw0) for n ∈ NM . Rodier proves the following

in [12, Sec 5], and its proof is valid for R-representations thanks to [1, App B.1] again.

Theorem 4.5. We have:

HomN (indG
P (τ), θ) ≃ HomNM

(τ, θM ).

In particular:
dθ(ind

G
P (τ)) =

∑
mπ dθ(π) = dθM (τ)

where
∑
mππ is the semisimplification of iGP (τ).

Remark 4.6. Rodier uses normalized parabolic induction, but because an unramified char-
acter of P must be trivial on NM , one deduces the above statement from that in [12].
Moreover up notational changes, one can read Rodier’s proof for the non-normalized version
of parabolic induction.

The existence of the cuspidal support [13, II.2.4] asserts that all irreducible representa-
tions embed into some indG

P (τ) with τ ∈ RepR(M) irreducible cuspidal. By the theorem
above, as well as Theorems 4.4 and 4.5 applied to τ , we obtain:

dθ(π) ⩽ dθM (τ) ⩽ 1.

5 Duality and the Rodier involution
For complex representations, one has the following result conjectured by Dipendra Prasad
in [11, Conj 1] and proved by Chang Yang in [14, Cor 7.7] following the method of Gelfand
and Kazhdan [9, Th 4 b)]. Recall that in the context of Section 4, the involution Iθ is an
automotphism lifting the Chevalley involution of G. Yang assumes his field F to be p-adic
but its proof works for any non Archimedean local fields in view of Proposition 4.2, which
alternatively is [14, Th 7.6]. Our proposition being valid over any algebraically closed fields
of characteristic not p, we recover Yang’s result over such fields as the rest of his proof
applies verbatim in our context. Hence we deduce:

Proposition 5.1. For all irreducible θ-generic representations π ∈ RepR(G), we have:

π∨ ≃ π ◦ Iθ.

6 An application to the metaplectic cover of GLn(F )

We let r be a positive integer such that F contains all r-th roots of unity and denote by µr(F )
this set of roots. In [10], Kazhdan and Patterson defined r-fold covers of Gn = GLn(F ) as
a group extension of Gn by µr(F ). Let N be the unipotent radical of the group of upper
triangular matrices B in Gn and θ be a non-degenerate character of N .
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Let G̃n be such an r-fold cover. Following [2], we can embed N as a subgroup of G̃n.
Therefore the notion of Whittaker models for θ also makes sense for irreducible representa-
tions of r-fold covers after specifying an embedding of N . Parabolic subgroups also make
sense in this context, so does parabolic induction. Then the main result of [2], which is the
extension to G̃n of Rodier’s heredity property for Gn, namely Theorem 4.5 for Gn, holds
over R. Hence an immediate application of Theorem 3.3 leads to:

Proposition 6.1. Let π = indG̃n

P̃
(τ) be a representation of G̃n which is parabolically induced

from an irreducible cuspidal representation τ . Then we have:

dθ(π) = dθ−1(π∨),

where both dimensions are known to be finite thanks to [2, Th] and [10, Th 1.5.2].

We could not find a proof of this fact in the literature and perhaps this is well known to
some experts. Note that this proposition would follow from the beautiful formula conjectured
and proved in some instances in [15] for the Whittaker multiplicity of discrete series of these
covering groups. Another interesting question would be to determine whether this result
holds for all irreducible representations.

7 Shortcuts for ℓ-modular representations
In this last section we quickly recover by different means some of our main results from
Sections 4 and 5 in the setting of ℓ-modular representations i.e. when R = Fℓ. This section
bypasses any consideration coming from Theorem 3.3 and Proposition 4.2. However we have
to use a result from Dat, Helm, Kurinczuk and Moss, which has yet to be published. It
appears as Proposition 7.1 below and actually relies on deep results of Fargues and Scholze.

We fix a prime number ℓ different from p and let G be as in Section 4. We call ℓ-adic a
representation of G over Qℓ and ℓ-modular a representation of G over Fℓ. Note that fixing
an isomorphism Qℓ ≃ C, the theory of smooth complex and ℓ-adic representations are the
same. We say that a smooth admissible ℓ-adic representation π of G is integral [13, I.9.6] if
it contains an admissible Zℓ-lattice L inside the space of π which is G-stable. If π is integral
as above, in addition to being finite length, then it is known [13, I.9.6] that L⊗Fℓ has finite
length and that the semi-simplification of L ⊗ Fℓ is independent of the lattice L. In this
case we denote by rℓ(π) this semi-simplification. We recall that a representation of G is
called supercuspidal if it does not appear as a subquotient of a representation parabolically
induced from a proper parabolic subgroup of G. For ℓ-modular representations, cuspidal
representations are not always supercuspidal, and though irreducible representations of G
all admit a supercuspidal support, it might not be unique [5]. We first state a result from
the forthcoming paper [6].

Proposition 7.1. Let π be an ℓ-modular irreducible supercuspidal representation of G,
then there is an irreducible integral ℓ-adic supercuspidal representation of G such that rℓ(π)
contains π.

We fix θ : N → Zℓ
×

a character of N , and denote by θ its composition with the canonical
surjection Zℓ → Fℓ. We say that an irreducible ℓ-modular (resp. ℓ-adic) representation π
(resp. π) of G is θ-generic (resp. θ-generic) if HomN (π, θ) ̸= {0} (resp. HomN (π, θ) ̸= {0}).
Thanks to Proposition 7.1, we have:

Corollary 7.2. Let π be an ℓ-modular θ-generic representation of G, then there is an
irreducible θ-generic integral ℓ-adic representation π of G such that π is the unique θ-generic
submodule rℓ(π). In particular dimFℓ

(π̄θ̄) = 1.

Proof. First of all there exist a parabolic subgroup P =MU of G and an irreducible super-
cuspidal representation ρ of M such that π̄ is a subquotient of iGP (ρ̄). Thanks to Rodier’s
heredity of Whittaker models, which still holds for ℓ-modular representations according to
Section 4, we deduce that ρ̄ must be θ̄|NM

-generic. By Proposition 7.1, let ρ be an irreducible
integral ℓ-adic representation of M such that rℓ(ρ) contains ρ̄.
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We now want to prove that ρ is θ-generic. To do so, we use a reduction argument.
Choose a G-stable Zℓ-lattice L in ρ. As ρ ∈ RepQℓ

(G), the exactness of θ-coinvariants in
Lemma 2.2 gives:

Lθ ⊆ ρθ = ρθQℓ
.

The Qℓ-vector space ρθ has dimension at most 1 by uniqueness of ℓ-adic Whittaker models.
Furthemore we have, thanks to Lemma 2.1, the equality of dimensions:

dimFℓ
(Lθ ⊗Zℓ

Fℓ) = dimFℓ
((L⊗Zℓ

Fℓ)θ̄),

and Lemma 2.2 also imposes:

dimFℓ
((L⊗Zℓ

Fℓ)θ̄) = dimFℓ
(rℓ(ρ)θ̄) ⩾ dimFℓ

(ρ̄θ̄) > 0.

So Lθ ̸= 0 and ρθ ≃ Qℓ.
Now, if M is a sub-Zℓ-module of Qℓ, then M ≃ Zℓ if and only if its reduction modulo ℓ

is non-zero. So Lθ ≃ Zℓ and dimFℓ
(rℓ(ρ)θ̄) = 1 = dimFℓ

(ρ̄θ̄). Then we conclude by Rodier’s
heredity property that dimFℓ

(π̄θ̄) = 1.

Remark 7.3. Note that the proof of Corollary 7.2 brings an alternative very short proof
of Theorem 4.1 for ℓ-modular representations. Only Rodier’s heredity for ℓ-modular rep-
resentations is used, as well as Rodier’s heredity and multplicity at most one for ℓ-adic
representations.

From Theorems 4.1 and 5.1, together with Theorem 3.3 and Corollary 7.2 we deduce the
following corollary, which is Proposition 5.1 for ℓ-modular representations:

Corollary 7.4. For all irreducible ℓ-modular θ-generic representation π̄ of G, we have:

π∨ ≃ π ◦ Iθ.

Proof. By Corollary 7.2, the representation π◦Iθ is the unique θ
−1

-generic factor in rℓ(π◦Iθ).
Now Proposition 5.1 implies that rℓ(π ◦ Iθ) ≃ rℓ(π

∨). But the contragredient π∨ is θ̄−1-
generic by Theorem 3.3 and it is a factor of rℓ(π∨) by [13, I.9.7]. So the claim follows.
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