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Abstract
The classical construction of the Weil representation, with complex coefficients,

has long been expected to work for more general coefficient rings. This paper exhibits
the minimal ring A for which this is possible, the integral closure of Z[ 1p ] in a
cyclotomic field, and carries out the construction of the Weil representation over
A-algebras. As a leitmotif all along the work, most of the problems can actually be
solved over the base ring A and transferred to any A-algebra by scalar extension. The
most striking fact is that all these Weil representations arise as the scalar extension
of a single one with coefficients in A. In this sense, the Weil module obtained is
universal. Building upon this construction, we speculate and make predictions about
an integral theta correspondence.

Introduction

This paper is intended as a stepping-stone in the direction of an “integral theta corres-
pondence”. Whatever this may be, it will require a theory of the Weil representation over
rings and the purpose of this paper is to carry this out on rings with minimal hypotheses.
When the coefficient ring is the field of complex numbers, this representation originated
in problems related to θ-series and was first constructed in the seminal paper [Wei64] of
André Weil.

There is another way, as opposed to the original approach of Weil, to build this
representation. Because of its relations with quantum physics, it appears often in older
literature as the so-called oscillator representation and involves the famous Stone-von
Neumann theorem as a cornerstone in this alternative construction [How79]. It plays a
pivotal role in the theta correspondence, where the interplay between this representation
and the dual pairs introduced by Roger Howe [How79] led to a conjectural bijective
correspondence between some subsets of irreducible representations for each member of
the dual pair.

This correspondence, known in older literature as Howe duality or the Howe corres-
pondence, took almost 40 years to be completely proven, and is now usually known as
the theta correspondence. The main works which led to its proof include [How79, Ral84,
Kud86, MVW87, Wal90, Mín08, GT16, GS17] and we refer to [Tri20] for a more detailed
exposition of these contributions to the classical theta correspondence. This celebrated
bijection plays a central role in number theory as it encodes a lot of arithmetic inform-
ation and allows one to build automorphic forms. It is the centre of a highly active
research field in the topic.
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In the 1980’s, Marie-France Vignéras studied, in relation to Serre’s conjectures, con-
gruences between automorphic representations by means of the modular representation
theory of their local factors. She considered smooth representations of connected re-
ductive p-adic groups with coefficients in fields that are more general than the complex
numbers, allowing in particular fields of positive characteristic. The theory splits into
two different aspects, depending on whether the characteristic of the coefficient is dif-
ferent from p or not. In the first case, which we study here, we talk about ℓ-modular
representations by implicitly meaning that ℓ ̸= p. (The second case is referred to as
modulo p representation theory and requires completely different techniques.)

An important result about these ℓ-modular representations is the compatibility of
the classical local Langlands correspondence for general linear groups with a certain ℓ-
modular one as described in [Vig01]. In recent years, there has been a growing interest
in studying representations in families i.e. over coefficient rings where p is invertible.
For general linear groups, families of representations with coefficients in a Witt ring
W (Fℓ) are quite well understood [Hel16] and provide a local Langlands correspondence
in families [EH14] compatible with (a modified version due to Breuil–Schneider of) the
classical one and the one constructed by Vignéras.

In terms of the theta correspondence and the Weil representation, a generalisation
to ℓ-modular representation theory has already been considered in the thesis of Alberto
Mínguez [Mín06]. Taking an ad-hoc analogue of the Weil representation for type II
dual pairs, he proves that a bijective correspondence holds when the characteristic is big
enough compared to the size of the dual pair at play. In order to develop a modular
theory of the theta correspondence, this analogue is not sufficient and one needs a proper
construction of the Weil representation for coefficient fields, or even coefficient rings.

In [Shi12], Sug Woo Shin achieves this for coefficient rings such that the associated
affine scheme is locally noetherian, by the use of geometric methods such as a Stone-
von Neumann theorem involving abelian schemes. In [CT13], the authors build a Weil
representation with coefficients in integral domains following the original approach of
Weil. The other representation-theoretic strategy, using a non-geometric version of the
Stone-von Neumann theorem, has been carried out in [Tri20]. The latter allows one to
recover most of the classical objects and study them in detail, such as the metaplectic
group, the metaplectic cocycle, and the lifts of dual pairs. Furthermore, this approach
generalises in a nice way in families without the need of particular assumptions on the
coefficient rings, improving the first two mentioned papers whose hypotheses (locally
noetherian affine scheme, or, integral domains) turn out to be more restrictive.

The present paper brings a broader construction of the Weil representation with
coefficients in any A-algebra, where A is a minimal ring specified below. In addition,
exhibiting a minimal Weil representation, called “universal” below, does not appear in
any previous work; nor the focus on extending scalars. The rest of the introduction is
split into two parts: in the first half we give more detail about the results we obtain along
these lines, as well as considerations about the metaplectic group and the metaplectic
cocycle; in the second half, we explain how we expect to use this to study an integral
theta correspondence, with particular focus on the special case of (GL1,GL1).
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Let F be either a local non-archimedean field, or a finite field, of residual characteristic
p and residual cardinality q, but of characteristic not 2. The minimal condition mentioned
above amounts to requiring two things: first that a non-trivial smooth additive character
ψ of F exists, allowing Fourier transform techniques; second that p is invertible, that is a
condition in terms of Haar measures. Write K = Q[ζp] when F has positive characteristic,
and K = Q[ζp∞ ] when F has characteristic 0. The minimal ring A satisfying the previous
two conditions is the integral closure of Z[1p ] in K.

Fix from now on a non-trivial smooth character ψ : F → A×. Notations will be
simplified in the introduction to be lighter than that in the main body of the paper. For
any A-algebra B with structure morphism φ, the character ψB = φ ◦ ψ is a non-trivial
character of F with values in B. More generally, if χ is a character of any group with
values in A, we write χB = φ ◦ χ.

0.1 Theory of the Weil representation over an A-algebra B

The theory developed in [MVW87, Chap. 2] for complex representations and in [Tri20]
for ℓ-modular representations finds a natural generalisation for an A-algebra B. Note
that there are no restrictive assumptions on the A-algebra considered. In particular, it
is not necessarily an integral domain.

Stone-von Neumann over A-algebras

Let A be a self-dual subgroup in the symplectic space (W, ⟨, ⟩) and ψA a character of the
group AH = A× F extending ψ. Here AH is considered as a subgoup of the Heisenberg
group H which is the set W × F endowed with the law:

(w, t) · (w′, t′) = (w + w′, t+ t′ +
1

2
⟨w,w′⟩).

The theorem below gathers together in a succinct way the main results we obtain in
Sections 2.2 & 2.3. It is the core part of the classical Stone-von Neumann theorem
when B = C [MVW87, Chap. 2, Th. I.2] and its generalisation when B is a field of
characteristic different from p [Tri20, Th. 2.1]. Working over a general ring, the notion
of “irreducible representation” is too restrictive. Instead, when G is a group, we say that
a B[G]-module V is everywhere irreducible if the representation V ⊗B k(P) is irreducible
for all P ∈ Spec(B), where k(P) is the field of fractions of B/P. This definition is very
convenient to state a Stone-von Neumann theorem over general rings that includes the
situation over coefficient fields.

Theorem A. Set V B
A = indHAH (ψ

B
A) ∈ RepB(H).

a) V B
A is everywhere irreducible, and is admissible.

b) We have V A
A ⊗A B = V B

A .

c) For A′ any self-dual subgroup in W and ψA′ an extension of ψ to A′
H , one has:

HomB[H](V
B
A , V

B
A′) ≃ B.
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A consequence of a) and c) is that the isomorphism class of the representation V B
A

does not depend on the choices of A and ψA. When B is a field, this representation is
also irreducible.

The full Stone-von Neumann Theorem for fields B also asserts that any irreducible
V ∈ RepB(H), such that V |F is ψB-isotypic, is in the isomorphism class defined by V B

A .
We do not pursue such a precise result over rings. However, for most of the applications
using Stone-von Neumann, and the Weil representation, one usually sticks to the explicit
models given by the representations V B

A , where A is a self-dual lattice or a lagrangian,
so our result is sufficient.

Weil representations over A-algebras

Let A be a self-dual subgroup in W . According to Section 3, the action of Sp(W )
on H induces a projective representation of σB : Sp(W ) → PGLB(V

B
A ) i.e. σB is a

group morphism. Denote by red : GLB(V
B
A ) → PGLB(V

B
A ) the quotient morphism.

To lift a projective representation, one uses the fiber product construction to obtain a
representation of some central extension. Looking at the fiber product of σB and red
above PGLB(V

B
A ), Proposition 3.2 defines:

S̃p
B
ψ,A(W )

ωB
ψ,A //

pB

��

GLB(V
B
A )

red
��

Sp(W )
σB // PGLB(V

B
A )

.

Definition. The Weil representation associated to ψ and A with coefficients in B is the
representation (ωB

ψ,A, V
B
A ) of the central extension S̃p

B
ψ,A(W ) of Sp(W ) by B×.

Recalling the canonical identification V A
A ⊗A B = V B

A from b) of Theorem A above,
our Theorem 3.4 ensures the compatibility:

Theorem B. There exists a canonical morphism of central extensions:

ϕ̃B : S̃p
A
ψ,A(W ) → S̃p

B
ψ,A(W )

whose image is a central extension of Sp(W ) by φ(A)×. Moreover, there is a commuting
diagram:

S̃p
A
ψ,A(W )

ωA
ψ,A //

ϕ̃B
��

GLA(VA)

��
S̃p

B
ψ,A(W )

ωB
ψ,A // GLB(V

B
A ).

Moreover there exist canonical identifications between these central extensions as A
varies: for any other self-dual subgroup A′, Corollary 3.6 defines a canonical morphism of
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central extension such that ωB
ψ,A and ωB

ψ,A′ agree, where the term “agree” is made precise
in the corollary mentioned. So the Weil representation ωB

ψ associated to ψ is well-defined
in the sense that the isomorphism class of ωB

ψ,A does not depend on A.

The metaplectic group over A-algebras

The isomorphism class of S̃p
B
ψ,A(W ), as a central extension of Sp(W ) by B×, does not

depend on the choice of A or ψA. In addition, the canonical isomorphism of central exten-
sions induced by V B

A ≃ V B
A′ is compatible with the fiber product projections. Therefore

one can speak of the metaplectic group over B associated to ψ as any element in the previ-
ous isomorphism class. Even if these groups may be isomorphic for different ψ, there does
not necessarily exist an isomorphism compatible with the fiber product construction: in
this sense these groups do depend on ψ.

We endow the module V B
A with the discrete topology and the group GLB(V

B
A ) with

the compact-open one. Then Corollary 4.2 compares the situation over A with that for
the classical metaplectic group. Indeed if we endow C with a structure of A-algebra,
then:

Proposition. The group S̃p
A
ψ,A(W ) is an open topological subgroup of S̃p

C
ψ,A(W ).

Here the natural topology on S̃p
C
ψ,A(W ) is that as a subgroup of Sp(W )×GLC(V

C
A ).

The classical metaplectic group is known to be locally profinite, and so is the metpalectic
group over A because of the proposition. Define now the derived group:

Ŝp
B
ψ,A(W ) = [S̃p

B
ψ,A(W ), S̃p

B
ψ,A(W )].

When B = C, this derived group is the reduced metaplectic group when F is local
non-achimedean, or the symplectic group when F is finite, except in the exceptional
case F = F3 and dimF (W ) = 2. Acccording to Proposition 4.3, one has a canonical
isomorphism of central extensions:

Ŝp
A
ψ,A(W ) ≃ Ŝp

C
ψ,A(W ).

Proposition 4.4 sheds light on the structure of the metaplectic group:

Theorem C. One has the following properties:

a) the group S̃p
B
ψ,A(W ) is the fiber product in the category of topological groups of the

morphisms σB and red, having the subspace topology in Sp(W )× GLB(V
B
A );

b) the representation ωB
ψ,A : S̃p

B
ψ,A(W ) → GLB(V

B
A ) is smooth;

c) the map ϕ̃B of Theorem B is open and continuous, and S̃p
B
ψ,A(W ) is locally profinite;

d) considering derived groups, the map ϕ̃B restricts to:
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i) a surjection Ŝp
A
ψ,A(W ) → Ŝp

B
ψ,A(W ) with kernel {±1} and image isomorphic

to Sp(W ) if F is local non-archimedean and char(B) = 2;

ii) an isomorphism Ŝp
A
ψ,A(W ) ≃ Ŝp

B
ψ,A(W ) otherwise.

Again exclude the exceptional case, which is considered in the separate Remark 4.12.
In Section 4.2, we prove:

Theorem D. There exists a section ςB : Sp(W ) → Ŝp
B
ψ,A(W ) compatible with that

defined over A and such that the associated 2-cocyle ĉB has image:

• {1} if F is finite or char(B) = 2;

• {±1} if F is local non-archimedean and char(B) ̸= 2.

Families of Weil representations

The consequence of these results is that one may speak of a universal Weil module ωA
ψ

over A associated to ψ: that is (see Proposition 5.4) any Weil representation ωB
ψ with

coefficients in B arises from the scalar extension of this universal Weil module. Thus,
according to the compatibility in Theorem B, the Weil representation ωA

ψ is a family of
Weil representations over the residue fields of Spec(A).

0.2 Towards an integral theta correspondence

In the rest of the introduction, we give some new ideas and speculate in the direction of
an integral theta correspondence. As an illustration, we study in detail the case of the
type II dual pair (F×, F×) but it is only this example which is part of the main body of
the paper. Thus the text below is a kind of story about the bigger picture to motivate
our study and can be omitted if the reader is only interested in the Weil representation
itself.

Suppose again F is local non-archimedean. For more general dual pairs (H1, H2),
one usually considers the Weil representation with coefficients in a field, along with its
biggest π1-isotypic quotients for π1 running through the irreducible representations ofH1.
However, there is no natural definition of what a good biggest isotypic quotient over a
ring should be. But there is another approach with a coarser invariant in terms of the
Bernstein centre, giving a bigger representation. In order to lighten notations further,
we omit the reference to ψ from now on.

Replacing biggest isotypic quotients: a heuristic approach

Suppose in this paragraph that B is an algebraically closed field. Let zB(H1) be the
Bernstein centre of H1. A character of the Bernstein of the centre is a B-algebra morph-
ism η1 : zB(H1) → B. The set of such characters correspond bijectively to the points
in Specmax(zB(H1)). Denote by ηπ1 : zB(H1) → B the character associated to π1. The
construction of the biggest π1-isotypic quotient factors through the biggest ηπ1-isotypic
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quotient, in the sense that for any V ∈ RepB(H1), the quotient V → Vπ1 factors through
V → V ⊗zB(H1) ηπ1 . Denote by Vηπ1 the latter representation. Regardless of the charac-
teristic of B, and similarly to Vπ1 ∈ RepB(H1 ×H2) when V ∈ RepB(H1 ×H2), one has
Vηπ1 ∈ RepB(H1 ×H2).

When the characteristic ℓ of B is banal with respect to H1, that is when ℓ does not
divide the pro-order |H1| of H1, the set of characters of zB(H1) is in bijection with the
set of cuspidal supports in RepB(H1) and we expect the following to hold for all η1 in a
Zariski open subset of Specmax(zB(H1)):

Vη1 ≃
⊕
π1∈η1

Vπ1

where π1 ∈ η1 means ηπ1 = η1, that is π1 has cuspidal support corresponding to η1.
Outside the banal setting, it seems risky to state any precise results. Already some

key facts fail: the maximal ideals of zB(H1) are no longer in bijection with cuspidal
supports. However the biggest π1-isotypic quotient Vπ1 always is a quotient of the bigger
representation Vηπ1 , so this last construction encapsulates more information. In addition,
we expect this object to behave in a nicer way for coefficient rings as it keeps track of
congruences.

Illustration for the type II dual pair (F×, F×)

The category RepB(F
×) can be decomposed according to the level and we denote by

Rep0
B(F

×) the level 0 direct factor category. This category is Morita-equivalent to the
category of z0-modules, where z0 is the commutative ring B[F×/1 + ϖFOF ]. Up to
choosing a uniformiser ϖF and a primitive (q − 1)-th root of unity ζ in F×, this ring is
isomorphic to B[X±1, Z]/(Zq−1 − 1) by sending X to ϖF and Z to ζ. Instead of consid-
ering biggest isotypic quotients associated to irreducible representations in RepB(F

×),
Section 6.1.1 considers more general isotypic families of representations using the explicit
description of (the center of) z0.

Definition. Let V ∈ RepB(F
×). When C is a commutative B-algebra and η : z0 → C is

a B-algebra morphism, the repesentation Vη = V ⊗z0 η ∈ RepC(F
×) may be thought as

the “biggest η-isotypic quotient of V .”

Remark. Unlike the situation of the biggest isotypic quotient, V does not necessarily
surject onto Vη if η is not surjective. So in general Vη is not a quotient of V , but the
image of V in Vη generates Vη as a C-module.

When B′ is a B-algebra, denote by (1B′

F× ,B′) ∈ Rep0
B(F

×) the trivial z0-module iso-
morphic to B′. Denote by (χB,B) the character with χB(ϖF ) = q ∈ B× and χB|O×

F
= 1B.

Thus χB is the inverse of the norm | · |F .
Let I1 be the ideal in z0 corresponding to (X − 1, Z − 1) in B[X±1, Z]/(Zq−1 − 1).

Denote the quotient map η1 : z0 → z0/I1. Consider the isotypic family Vη1 associated to
η1 with respect to the action of the first copy of F× on V . Take the same convention for
I corresponding to (X − q, Z − 1) with η being the quotient map.
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Theorem E. One has in RepB(F
×) the following isomorphisms:

a) Vη1 ≃ 1B/(q−1)B
F× ⊕ 1B

F× ;

b) Vη ≃ 1B/(q−1)B
F× ⊕ χB.

The subrepresentation 1B/(q−1)B
F× is in a certain sense the “defect” in the theta cor-

respondence. This is a pure (q − 1)-torsion submodule, whereas the other part is a free
B-module of rank 1. When B is a field, this defect vanishes if and only if the characteristic
ℓ of B does not divide q − 1, that is ℓ is banal with respect to F×.

Further example

Using this interpretation in terms of the characters of the Bernstein centre seems to be
more suitable when B is a ring. Indeed recall the situation in [Tri20, Sec. 5.3] where
F has odd residual characteristic and (H1, H2) is a type I dual pair that is split in the
metaplectic group. Let ℓ be a prime that does not divide the pro-order of H1 and endow
B = W (Fℓ) with an A-algebra stucture. Let K be the fraction field of B. For any
absolutely irreducible cuspidal Π1 ∈ RepK(H1), one has the equality VΠ1 = VηΠ1

for
V ∈ RepK(H1).

The reduction modulo ℓ of Π1 is obtained by choosing a sable lattice LΠ1 in Π1. The
reduction modulo ℓ of this lattice is an irreducible representation π1 whose isomorphism
class does not depend on the choice of LΠ1 . We refer to [Tri20, Sec. 5.3] for more details,
but what is important here is that similarly to Π1, we have Vπ1 = Vηπ1 for V ∈ RepFℓ(H1).
Actually this comes along with some compatibilities to scalar extension. Indeed there
exists a character η1 : zW (Fℓ)(H1) → W (Fℓ) of the integral Bernstein centre such that
η1⊗W (Fℓ) Fℓ = ηπ1 and η1⊗W (Fℓ)K = ηΠ1 . This yields, for any V ∈ RepW (Fℓ)(H1×H2),
the following canonical morphisms in RepW (Fℓ)(H1 ×H2):

Vη1

����

// Vη1 ⊗W (Fℓ) K = (V ⊗W (Fℓ) K)ηΠ1

Vη1 ⊗W (Fℓ) Fℓ = (V ⊗W (Fℓ) Fℓ)ηπ1

.

When V = ω is the Weil representation with coefficients in W (Fℓ), the Weil representa-
tions with coefficients in the residue fields Fℓ and K of W (Fℓ) are ω̄ = ω ⊗W (Fℓ) Fℓ and
Ω = ω⊗W (Fℓ)K respectively. The biggest isotypic quotients are ΩηΠ1

≃ Π1⊗KΘ(Π1) and
ω̄ηπ1 ≃ π1⊗FℓΘ(π1), where Θ(Π1) ∈ RepK(H2) and Θ(π1) ∈ RepFℓ(H2). So ωη1 is a good
family object because its generic fiber is Π1⊗KΘ(Π1) and its special fiber is π1⊗FℓΘ(π1).
In addition Θ(Π1) is irreducible, when it is non-zero and ωη1 is a W (Fℓ)[H1×H2]-lattice
in Π1⊗KΘ(Π1). Furthermore, when ℓ is banal with respect to H2 and Θ(Π1) is cuspidal,
the representation Θ(π1) is the reduction modulo ℓ of Θ(Π1) and is therefore irreducible
[Tri20, Th. 5.17]. To relate Θ(Π1) and Θ(π1) in general, one needs to explicitly know
which lattice in Π1 ⊗K Θ(Π1) is ωη1 .
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First expectations

Of course in the most general situation, i.e. when the coefficient ring B is Z[1p ] (or A),
exhibiting blocks, as well as their centres, is a daydream. However, one can play with:

• “simpler” rings B (fields, local rings, banal characteristic, etc.);

• special classes of representations (cuspidals, level 0, etc.);

• easier groups in the dual pair (small dimension, general linear, etc.).

As recalled, this has been achieved in [Tri20, Sec. 5.3] for type I dual pairs (H1, H2) over
the local ring W (Fℓ) when ℓ is banal with respect to H1, looking at the block defined by a
(super)cuspidal representation. In Section 6, we consider the (very simple) pair (F×, F×),
especially for level 0 representations. For bigger type II dual pairs (GLn(F ),GLm(F ))
and coefficients rings being made of Witt vectors, the work [Hel16] seems to be the
cornerstone to tackle the problem. Based on calculations in small dimensions, we make
the following two conjectures.

Torsion principle. When the pro-order of H1, or that of H2, is not invertible in B,
we expect the failure of the theta correspondence to appear as some |H1|f |H2|f -torsion
submodule in the family object, where |Hi|f denotes the prime-to-p part of the pro-
order of Hi. Thanks to Theorem E, this principle is made a bit more precise when
(H1, H2) = (F×, F×).

Bijection principle for characters of the Bernstein centre. Another problem is
the following. When η1 : zB(H1) → B is a character, are there any nice properties of
(ωB)η1 , where ωB is the Weil representation over B? For instance, it seems that the
action of zB(H2) can also be described in terms of a character of zB(H2). Indeed one
expects that there exists a character η2 : zB(H2) → B such that ((ωB)η1)η2 = (ωB)η1 .
Denoting by η1 ⊗B η2 the natural character zB(H1) ⊗B zB(H2) → B, we expect even
more: (ωB)η1 = (ωB)η2 = (ωB)η1⊗Bη2 . Writing η2 = θ(η1), one could then speak of a
theta correspondence in terms of characters of the respective Bernstein centres because
θ would induce a bijection:

{η1 : zB(H1) → B | (ωB)η1 ̸= 0} θ≃ {η2 : zB(H2) → B | (ωB)η2 ̸= 0}.

Acknowledgements: I would like to thank Shaun Stevens for his useful comments, as
well as Gil Moss for fruitful discussions.
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1 Preliminaries

1.1 Notations

All along the paper F will be a field of characteristic not 2, which is either finite or
local non archimedean. The residual characteristic and cardinality of F are denoted as
usual p and q. To turn F into a topological field one considers the usual locally profinite
topology. One of the many equivalent formulations of the latter is “locally compact and
totally disconnected”.

K and A. Let K be the field defined in the following two cases:

• K is the cyclotomic extension of Q containing the pth roots of unity, when the
characateristic of F is positive;

• K is the algebraic extension of Q containing all the p power roots of unity, when
the characteristic of F is zero.

One can write K = Q(ζp) by fixing a generator ζp in the first case; in the second however,
no generator exists, though the notation K = Q(ζp∞) is commonly used. Based on
classical results for cyclotomic extensions, the integral closure OK of Z in K is, in the
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first case Z[ζp], and in the second Z[ζp∞ ]. From now on, let A be the subring of K
obtained from the ring of integers OK by inverting p, that is:

A = OK

[
1

p

]
.

A-algebras. By convention, the term A-algebra will refer to commutative rings B
endowed with an A-algebra structure, that is, a ring morphism φ : A → B. In order
to avoid confusion, those B considered always are unitary rings and φ maps the neutral
multiplicative element of A to that of B. Denote char(B) the characteristic of B, that
is the natural number such that {k ∈ Z | φ(k) = 0} = char(B)Z. The ring morphism
φ induces a group morphism A× → B× between the group of units of A and that of B.
Denote µp(B) = {ζ ∈ B× | ∃k ∈ Z, ζpk = 1} for the group of elements in B× having order
a power of p.

Character ψB. Let B be an A-algebra. Then φ restricts injectively to the group of
roots in A× having order a power of p, that is the group morphism φ : µp(A) → µp(B)
is injective. Indeed, given two distinct roots of unity ζ and ζ ′ in µp(A), their difference
ζ−ζ ′ is in A× because p ∈ A×, so they define two distinct elements in φ(A) = A/Ker(φ).
Therefore one can build, out of any non-trivial smooth character ψ : F → A×, a character
φ ◦ ψ : F → B× which is still non-trivial and smooth. In order to keep track of the ring
considered, one uses a superscript to refer to the A-algbera at stake. From now on, fix
such a non-trivial smooth ψA : F → A× and set:

ψB = φ ◦ ψA.

Smooth representations. Let G be a locally profinite group. Let R be a commutative
unitary ring. An R[G]-module V is said to be smooth if for all v ∈ V , the stabiliser Gv
of v is open in G. One denotes RepR(G) the category of smooth R[G]-modules. For any
closed subgroupH in G, the induction functor IndGH associates to any (σ,W ) ∈ RepR(H),
the representation IndGH(W ) ∈ RepR(G) of locally constant functions on G taking values
in W and satisfying f(hg) = σ(h) ·f(g) for all g ∈ G and h ∈ H. The compact induction
indGH is the subfunctor of IndGH made of functions compactly supported modulo H, that
is the subspace of functions f ∈ IndGH(W ) such that the image of supp(f) in H\G is a
compact set. A representation V ∈ RepR(G) is said to be admissible if for all compact
open subgroups K in G, the set of K-invariants V K = {v ∈ V | g · v = v} is finitely
generated as an R-module.

Haar measures. Let G be a locally profinite group. In the following, we use the
notations of [Vig96, I.1 & I.2]. The pro-order |G| of G is the least common multiple, in the
sense of supernatural integers, of the orders of its open compact subgroups. To be more
explicit, |G| is a function P → N∪∞ on the set of prime numbers P. This decomposes in
an obvious way into two parts having disjoint supports, namely the finite part |G|f and
the infinite one |G|∞. The only situation occuring in the present work is |G| = |G|f×|G|∞
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with |G|∞ ∈ {1, p∞}, according to G being either a finite group or an infinite p-adic
group; in the latter case, |G|f is prime-to-p. Let R be a commutative unitary ring. As
long as all the primes in |G|∞ are invertible in R, there exists a Haar measure on G
with values in R, that is a non-zero left G-equivariant morphism C∞

c (G,R) → 1RG where
C∞
c (G,R) is the space of locally constant and compactly supported functions in G with

values in R, and (1RG, R) is the trivial representation. A normalised Haar measure on G
is a Haar measure taking the value 1 on a compact open subgroup of G. In particular
such a compact open subgroup must be of invertible pro-order in R. Reciprocally, any
normalised Haar measure arises as a Haar measure having value 1 on a compact open
subgroup of invertible pro-order in R.

The space W . Let (W, ⟨, ⟩) be a symplectic vector space of finite dimension over F . Its
isometry group is composed of the F -linear invertible endomorphisms preserving the form
⟨, ⟩ and is classically denoted Sp(W ). A lagrangian in W is a maximal totally isotropic
subspace. Denote the dimension of W by n = 2m, then X is a lagrangian if and only if it
is a vector subspace which is totally isotropic (i.e. ∀x, x′ ∈ X, ⟨x, x′⟩ = 0) of dimension
m. A lattice L in W is a free OF -module of rank n. The locally profinite topology on
the field F induces a locally profinite topology on the finite dimensional vector space W .
As a result, a lattice in W is a compact open set. Furthermore the subspace topology
induced from that of EndF (W ) on the symplectic group Sp(W ) is the locally profinite
one as well.

2 Metaplectic representations over A-algebras

The Heisenberg group H is the set W × F endowed with the product topology and the
composition law:

(w, t) · (w′, t′) = (w + w′, t+ t′ +
1

2
⟨w,w′⟩)

for (w, t) and (w′, t′) in H =W × F .
Let B be an A-algebra with structure morphism φ. Let ψA : F → A× be a non-trivial

smooth character. As already mentioned in Section 1.1, this defines, by composing ψ
and φ, a character ψB : F → B× which is smooth and non-trivial.

2.1 A lemma for representations over rings

Let G be a group and R a commutative ring. For every prime ideal P in Spec(R), one
denotes k(P) the fraction field of R(P) = R/P. Both k(P) and R(P) are endowed
with an obvious structure of R-algebras. For any R[G]-module V , the tensor product
V ⊗R k(P) is a k(P)[G]-module in the obvious way. Of course, the latter is smooth if
the former is.

Definition 2.1. An R[G]-module V is said to be irreducible at P ∈ Spec(R) if the
representation V ⊗R k(P) ∈ Repk(P)(G) is irreducible. By extension, V is everywhere
irreducible if it is irreducible at any point of Spec(R).
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There exists a simple sufficient condition to be everywhere irreducible:

Lemma 2.2. Let V be an R[G]-module and consider the map I 7→ IV that maps an
ideal I of R to the sub-R[G]-module IV of V . If the previous map defines a bijection
between ideals of R and sub-R|G]-modules of V , then V is everywhere irreducible.

Proof. Using the bijection, one has PV ⊊ V for any prime (proper) ideal P, so the module
V ⊗R R(P) = V/PV is non-zero. It is even R(P)-torsion free because, if av ∈ PV for
a ∈ R and v ∈ V , then aIv ⊂ P where IvV = R[G] · v. In particular V ⊗R R(P) embeds
in V ⊗R k(P) by a localisation argument, so the latter representation is non-zero.

In order to prove that V ⊗Rk(P) is irreducible, let W be a non-zero subrepresentation
of V ⊗R k(P) and define W ′ = {v ∈ V | v ⊗R 1 ∈ W}. As a first elementary claim,
this W ′ is a non-zero sub-R[G]-module of V . In addition the bijection hypothesis yields
the existence of an ideal I of R such that W ′ = IV . Observe furthermore thanks to the
bijection that I ⊂ P if and only if IV ⊂ PV . As a consequence, the image of IV in
V ⊗R k(P) generates V ⊗R k(P) as a k(P)-vector space if and only if I is not contained
in P. Of course the image of W ′ in V ⊗R k(P) is non-zero because W is not, so I is not
contained in P i.e. the image of W ′ generates V ⊗Rk(P). Therefore W = V ⊗Rk(P).

2.2 Models V B
A associated to self-dual subgroups

When A is a closed subgroup of W , define:

A⊥ = {w ∈W | ψA(⟨w,A⟩) = 1}.

In this definition, whether one uses ψA or ψB matters not. Now, the closed subgroup
A of W is said to be self-dual if A⊥ = A. Lagrangians and self-dual lattices provide
examples of such subgroups, so there always exist self-dual subgroups in W .

Lemma 2.3. Let A be a self-dual subgroup of W . Then there exists a character ψA
A

which extends ψA to the subgroup AH = A×F of the Heisenberg group H. Furthermore,
ψB
A = φ ◦ ψA

A provides the same kind of extension, that is, ψB
A extends ψB to AH .

This lemma can be proved in the exact same elementary way as [Tri20, Lem. 2.2 a)].
For the sake of shortness, we simply refer to the latter. The heart of the current section
is the following proposition, generalising [Tri20, Lem. 2.2 b)] where the A-algebra B is a
field:

Proposition 2.4. Let ψA
A be as above and set V B

A = indHAH (ψ
B
A) ∈ RepB(H).

a) The map I 7→ IV B
A defines a bijection from the set of ideals of B to the set of

sub-B[H]-modules of V B
A . In particular, V B

A is everywhere irreducible;

b) The B[H]-module V B
A is admissible and V B

A = IndHAH (ψ
B
A);

c) V B
A satisfies Schur’s lemma, that is EndB[H](V

B
A ) = B.
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Proof. The core idea of the proof comes from [Tri20, Lem. 2.2 b) & Prop 2.4 c)], which
was originally generalising [MVW87, Chap. 2, I.3 & I.6]. As some differences occur when
dealing with A-algebras instead of fields, we carefully examine and detail them below.
a) First remark that, assuming the bijection property holds, the second part of the
statement is a mere application of Lemma 2.2. Therefore we focus our attention to
proving that such a bijection holds.

The B[H]-module V B
A is generated as a B-module by a family (χw,L) we now describe.

As ψB
A is smooth, there exists for all w ∈ W an open compact subgroup Lw of W such

that ψB
A(a) = 1 for all a ∈ AH ∩ (w, 0)(Lw, 0)(w, 0)

−1. Fix such choices of small enough
lattices (Lw)w∈W . Then if L is a sublattice of Lw, there exists a unique function in
V B
A which is supported on AH(w, 0)(L, 0), right invariant under (L, 0) and taking the

value 1 at (w, 0). One denotes it χw,L. The B[H]-module V B
A being smooth, any f in this

compactly induced module can be written as a finite sum of such χw,L, that is the family
(χw,L)w∈W,L⊂Lw is generating V B

A . Actually we can give a more precise decomposition in
terms of these functions. We claim that f can be written as a finte sum

∑
f((w, 0)) ·χw,L

where L only depends on f and the functions χw,L have disjoint supports. Indeed, assume
that f is right invariant by (L, 0) and f((w, 0)) ̸= 0. In order for χw,L to be well-defined,
the condition ψB

A(a) = 1 for all a ∈ AH ∩ (w, 0)(L, 0)(w, 0)−1 needs to be satisfied. Note
that (w, 0)(L, 0)(w, 0)−1 = {(l, ⟨w, l⟩) | l ∈ L} so the intersection with AH is simply
{(l, ⟨w, l⟩) | l ∈ A ∩ L}. By right invariance, we obtain for all l ∈ A ∩ L the equality
f((w, 0)) = f((w, 0)(l, 0)) = ψB

A((l, ⟨w, l⟩))f((w, 0)). This implies that ψB
A(⟨l, ⟨w, l⟩) = 1

for all l ∈ A ∩ L because 1 − ζ is a regular element in B when ζ ∈ µp(B) and ζ ̸= 1.
Therfore f =

∑
f(w, 0) · χw,L where the sum runs over a finite number of double cosets

AH(w, 0)(L, 0) in H. Because the subspace of functions in V B
A taking values in I and the

space IV B
A both contain (i · χw,L)i∈I,w∈W,L⊂Lw as a generating family, they must agree.

Consequently the injectivity of the map I 7→ IV B
A follows.

The surjectivity of I 7→ IV B
A amounts to proving that any sub-B[H]-module of V B

A

is of the form IV B
A . For any subset X of V B

A , define IX =< f(h) | h ∈ H, f ∈ X > the
ideal in B generated by the set of values of functions in X. There is an obvious inclusion
of B[H]-modules B[H] · X ⊂ IXV

B
A . We claim even more: this inclusion actually is an

equality. It is enough to prove it when X is a singleton to deduce the result general case
because B[H] ·X =

∑
B[H] ·f and IXV B

A =
∑
IfV

B
A where the sums run over all f ∈ X.

So from now on, suppose that X is made of a single function f in V B
A . We would like to

prove that the reverse inclusion holds, that is:

IfV
B
A ⊂ B[H] · f.

As p is invertible in B, there exists a Haar measure of H which takes values in B and
is normalised over a compact open subgroup of H. Let µ be such a measure. The claim
will then follow from the – technical-to-state but rather clear – observation below:

Lemma 2.5. Let f be a non-zero function of V B
A . For any w ∈ W , fix a sufficiently

small lattice Lw in W such that (Lw, 0) leaves f right invariant and ψB
A(a) = 1 for all

a ∈ AH ∩ (w, 0)(Lw, 0)(w, 0)
−1. Then for any sublattice L of Lw, there exists an element

ϕw,L ∈ B[H] such that ϕw,L · f = f((w, 0))χw,L.
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Proof. First of all, the fact that such a choice of lattices (Lw)w∈W exists comes for the
smoothness of V B

A and ψB
A. Let L be sublattice of Lw and define:

ϕ : a ∈ A 7→
ψB
A((−a, 0))

vol(L⊥ ∩A)
ψB(⟨−w, a⟩)1L⊥∩A(a) ∈ B

where 1X is the characteristic funtion of X, µA is a Haar measure of A normalised over a
compact open subgroup and vol(L⊥ ∩A) is a power of p. Then an explicit computation
will show that the function:

ϕ · f : h ∈ H 7→
∫
A
ϕ(a)f(h(a, 0))dµA(a) ∈ B

belongs to B[H] · f and is a scalar multiple of χw,L.
We give short but prompt explanation of this last computational claim. Given that

the function ϕ is compactly supported and locally constant, one can write – up to some
volume factor which is a mere power of p – the function ϕ · f as a finite sum:∑

ϕ(ai)f(h(ai, 0)) =
(∑

ϕ(ai)(ai, 0)
)
· f(h).

So ϕ · f belongs to B[H] · f . For all w′ ∈W , the compution mentioned above reads:

ϕ · f((w′, 0)) = f((w′, 0))× 1

vol(L⊥ ∩A)

∫
L⊥∩A

ψB(⟨w′ − w, a⟩)dµA(a).

A classical argument rewrites the last term as 1A+w+L(w
′). Therefore ϕ · f has support

AH(w, 0)(L, 0), is right invariant under (L, 0) and takes the value f((w, 0)) at (w, 0). By
unicity, one must have ϕ·f = f((w, 0))·χw,L. Now ϕw,L exists because ϕ·f ∈ B[H]·f .

Applying the previous lemma, we conclude that the reverse inclusion IfV B
A ⊂ B[H] ·f

holds. So the map I 7→ IV B
A is injective and surjective, that is being bijective.

b) Let L be an open compact subgroup of W . Let w ∈ W . Consider the set of func-
tions left ψB

A-equivariant, supported on the double coset AH(w, 0)(L, 0) and right in-
variant under (L, 0). Actually this space of functions is isomorphic to either B or 0
as a consequence of the formula for invariants vectors in compactly induced represent-
ations [Vig96, I.5.6]. Denote by χw,L the appropriate generator, meaning the function
that takes value either 1 or 0 at (w, 0). Fix representantives in W for the double coset
AH\H/(L, 0) ≃ A\W/L = W/(A + L). Remark that the admissibility of V B

A follows
from the fact that, given some L, there are only finitely many representantives w giving
rise to non-zero functions χw,L. We are now proving this claim about functions χw,L.

Suppose χw,L is non-zero. For all l ∈ L ∩A, one has:

1 = χw,L((w, 0)) = χw,L((w, 0)(l, 0)) = χw,L((l, ⟨w, l⟩)(w, 0)) = ψB(⟨w, l⟩)ψB
A((l, 0)).

Thus for all l ∈ L ∩ A, the relation ψB(⟨w, l⟩) = ψB
A((−l, 0)) must hold. It means that

any two representantives w and w′, giving rise to non zero χw,L and χw′,L, must satisfy
the relation ψB(⟨w − w′, l⟩) = 1 for all l ∈ L ∩A i.e. w − w′ ∈ (L ∩A)⊥. However:

(L ∩A)⊥ = L⊥ +A⊥ = L⊥ +A.
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As L is compact open, its orthogonal L⊥ is compact open too because this holds for
lattices in W . So the image of L⊥ in the quotient W/(A+L) is a finite set, which means
the set of representatives w giving rise to non-zero χw,L, when L is fixed, is finite.

To conclude, for any sufficiently small open compact subgroup L of W , the condition
for smallness being L× Ker(ψB) is a subgroup of H, one has:

(V B
A )L×Ker(ψB) =

⊕
χw,L ̸=0

B · χw,L

where the right-hand side sum is finite. So the smooth B[H]-module V B
A is admissible,

and according to [Vig96, I.5.6 1)], it is equivalent to saying that indHAH (ψ
B
A) = IndHAH (ψ

B
A).

c) As proved in the previous point, there exists a sufficiently small open compact sub-
group L of W such that K = L× Ker(ψB) is a subgroup of H and:

(V B
A )K =

⊕
χw,L ̸=0

B · χw,L

where the right-hand side sum is finite. In addition, there exists a non-zero χw,L for
w ∈ W if the condition “ψB

A(a) = 1 for all a ∈ AH ∩ (w, 0)(L, 0)(w, 0)−1” is satisfied.
Therefore, up to strengthening the sufficiently small condition, one may suppose that
(V B
A )K ̸= 0. Because every B · χw,L is isomorphic to B, and the sum runs over functions

with mutually disjoint supports, the B-module (V B
A )K is a free module of finite rank.

Thanks to point a), the B[H]-module V B
A is generated by a single element χw,L.

Indeed, the ideal Iχw,L =< χw,L(h) | h ∈ H > satisfies B[H] · χw,L = Iχw,LV
B
A and

contains 1 since χw,L((w, 0)) = 1. Thus the restriction to (V B
A )K induces an injective

morphism of B-algebras:

ξ : EndB[H](V
B
A ) ↪→ EndHB(H,K)((V

B
A )K),

where (V B
A )K is a module on the relative Hecke algebra HB(H,K) [Vig96, I.4.5].

The module (V B
A )K being free over B, write its basis B = (χw,L)w. In this basis, the

function ϕw,L defined above in the proof of Lemma 2.5 becomes the elementary projector
Ew onto χw,L i.e. for all w′ ∈ B one has:

ϕw,L · χw′,L = χw′,L((w, 0))× χw,L =

{
0 if w′ ̸= w;
χw,L otherwise.

Let now Φ ∈ EndB[H](V
B
A ). Then the image ξ(Φ) of Φ in EndHB(H,K)((V

B
A )K) com-

mutes with Ew for all w ∈ B as it commutes with the action of ϕw,L. Because of this
commutation relation between ξ(Φ) and Ew, there exists a scalar λw ∈ B such that
ξ(Φ)(χw,L) = λw × χw,L. As any χw,L generates V B

A as a B[H]-module, it does generate
(V B
A )K as a HB(H,K)-module. This last fact implies that all the λw are equal. Therefore

there exists λ ∈ B such that ξ(Φ) = λId(V B
A )K . So Φ = λidV B

A
because ξ is injective.

The following can be easily deduced from Proposition 2.4 that has just been proved
and the finiteness property of the compact induction:
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Corollary 2.6. Let B′ be a B-algebra given by the ring morphism φ′ : B → B′. Then the
morphism φ′ induces a canonical isomorphism of smooth B′[H]-modules:

V B
A ⊗B B′ ≃ V B′

A .

It is given on simple tensor elements by the map f ⊗B b
′ 7→ b′ × (φ′ ◦ f).

This result will allow to reduce any problem over an A-algebra to a problem over A,
because applying the corollary leads to the canonical identification:

V B
A ≃ V A

A ⊗A B.

Furthermore, one can consider A-algebras that are not integral domains. For instance,
if B =

∏
i Bi is a finite product of A-algebras (Bi), then:

V B
A ≃

⊕
i

V Bi
A .

2.3 Changing models from V B
A1

to V B
A2

Let A1 and A2 be two self-dual subgroups of W . Let ψA
A1

be a character that extends
ψB to A1,H as in Lemma 2.3. Similarly, fix an extension ψA

A2
of ψB with respect to A2,H .

Once again, set ψB
A1

= φ◦ψA
A1

and ψB
A2

= φ◦ψA
A2

, which are both smooth and non-trivial
characters. Suppose ω ∈W satisfies the condition:

ψB
A1

((a, 0))ψB
A2

((a, 0))−1 = ψB(⟨a, ω⟩) for all a ∈ A1 ∩A2.

Note that such an ω always exist as the left-hand side defines a character of A1 ∩A2.
Let µ be a Haar measure with values in B of the quotient A1 ∩A2\A2. Define:

Iµ =< µ(K) | K open compact subgroup >

the ideal of B generated by the various values taken by µ on the open compact subgroups
of A1 ∩ A2\A2. By unicity of the Haar measure, the ideal Iµ is prinicpal and generated
by any µ(K) as long as the pro-order of K is invertible in B. The measure is said to
be invertible if Iµ = B. Of course, every normalised Haar measure, that is a measure
taking the value 1 on a compact open subgroup, is invertible. For µ to be invertible, it
is necessary and sufficient that there exists a compact open subgroup whose measure is
a unit in B i.e. µ is a unit multiple of a normalised Haar measure.

Proposition 2.7. The map IA1,A2,µ,ω associating to f ∈ V B
A1

the function:

IA1,A2,µ,ωf : h 7−→
∫
A1,H∩A2,H\A2,H

ψB
A2

(a)−1f((ω, 0)ah) dµ(a)

is a morphism of smooth B[H]-modules from V B
A1

to V B
A2

. Its image is IµV B
A2

and, as a
result, IA1,A2,µ,ω is an isomorphism if and only if µ is an invertible measure. In addition,
any invertible measure µ induces an isomorphism of B-modules:

HomB[H](V
B
A1
, V B

A2
) = {λIA1,A2,µ,ω | λ ∈ B} ≃ B.
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Proof. On the one hand, the function IA1,A2,µ,ωf is well defined. Indeed for any h ∈ H,
the function a ∈ A2,H 7→ ψB

A2
(a)−1f((ω, 0)ah) ∈ B is (A1H ∩ A2,H)-left invariant and

locally constant, so one can consider it is a function on A1,H ∩A2,H\A2,H = A1∩A2\A2.
The function a ∈ A2,H 7→ f((ω, 0)ah) ∈ B is compactly supported modulo A1,H ∩ A2,H

because, as in [Tri20, Sec. 2.3], the sum A1 + A2 is a closed subgroup of H. Finally, a
change of variables implies that IA1,A2,µ,ωf is left ψB

A2
-equivariant. The map IA1,A2,µ,ω

is clearly B-linear and H-equivariant so that IA1,A2,µ,ω ∈ HomB[H](V
B
A1
, V B

A2
).

As a result of point a) from Proposition 2.4, the image of IA1,A2,µ,ω must be of the
form IV B

A2
for some ideal I in B. Actually, we proved a sharper results in the proof of

point a) showing that:

I = {IA1,A2,µ,ωf(h) | f ∈ V B
A1
, h ∈ H}.

If µ is chosen to be invertible, then for any other measure µ′, there exists λ ∈ B generating
Iµ′ and such that the image of IA1,A2,µ′,ω is Iµ′IV B

A2
= λIV B

A2
. It reduces to consider the

morphism IA1,A2,µ,ω when µ is invertible. In this case, we show below that the morphism
is surjective and as injective.

Suppose µ is invertible. As in the proof of Proposition 2.4, choose a sufficiently small
open compact subgroup L of W such that there exists a non-zero function χω,L supported
on A1,H(ω, 0)(L, 0), right invariant under (L, 0) and taking the value 1 at (ω, 0). One
may as well suppose that ψA2((l, 0)) = 1 for all l ∈ L, by choosing an even smaller L if
needed. Then the formula for χω,L at h = (0, 0) reads:

IA1,A2,µ,ωχω,L((0, 0)) =

∫
L∩A1∩A2\L∩A2

ψA2((l, 0))
−1χω,L((ω, 0)(l, 0)) dµ(l)

=

∫
L∩A1∩A2\L∩A2

χω,L((ω, 0)) dµ(l)

= vol(L ∩A1 ∩A2\L ∩A2).

The group L∩A1∩A2\L∩A2 has pro-order a power of p, so its volume for the invertible
measure µ is a unit i.e. IA1,A2,µ,ωχω,L((0, 0)) ∈ B×.

Therefore the previous unit IA1,A2,µ,ωχω,L((0, 0)) belongs to I i.e. I = B = Iµ. It
follows that the morphism IA1,A2,µ,ω is surjective. It is injective as well. Indeed, its kernel
is of the form I ′V B

A1
for some ideal I ′ of B, and for all i′ ∈ I ′, the function i′χω,L belongs

to the kernel. However the function IA1,A2,µ,ω(i
′χω,L) = i′IA1,A2,µ,ωχω,L takes the value

i′ at (0, 0) and is the zero function. So i′ = 0 and I ′ is the zero ideal of B.

Consider the scalar extension functor:

V ∈ RepA(H) 7→ V ⊗A B ∈ RepB(H)

and denote ϕB : HomA[H](V
A
A1
, V A

A2
) → HomB[H](V

B
A1
, V B

A2
) the map that is induced by

functoriality.
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In particular for all f ∈ HomA[H](V
A
A1
, V A

A2
), the following diagram, where the vertical

arrows are given by the canonical V A
A → V A

A ⊗A B of Corollary 2.6, is commutative:

V A
A1

f //

��

V A
A2

��
V B
A1

ϕB(f) // V B
A2

.

For ω ∈W , observe now that the two following conditions are equivalent:

• ψA
A1

((a, 0))ψA
A2

((a, 0))−1 = ψA(⟨a, ω⟩) for all a ∈ A1 ∩A2;

• ψB
A1

((a, 0))ψB
A2

((a, 0))−1 = ψB(⟨a, ω⟩) for all a ∈ A1 ∩A2.

Fix ω ∈W satisfying one of the previous two. The corollary below is quite immediate:

Corollary 2.8. Let µA be an invertible Haar measure of A1 ∩A2\A2 with values in A.
Set µB = φ ◦ µA. This latter measure is an invertible B-valued measure. Then for all
M ∈ HomB[H](V

B
A1
, V B

A2
), there exists λ ∈ B such that:

M = λ× IA1,A2,µB,ω = λ× ϕB(IA1,A2,µA,ω).

3 Weil representations over A-algebras

Let B be an A-algebra. Let A a self-dual subgroup of W and V B
A = indHAH (ψ

B
A) the

smooth B[H]-module built in Section 2.2, where ψB
A is an extension of ψB in the way

of Lemma 2.3. The symplectic group Sp(W ) is naturally acting on H through the first
coordinate, that is:

g · (w, t) = (gw, t)

for g ∈ Sp(W ) and (w, t) ∈ H. Of course, self-dual subgroups are preserved under this
action, that is gA is self-dual for all g ∈ Sp(W ).

In this section g always denotes an element of Sp(W ). For f ∈ V B
A , the function:

Igf : h ∈ H 7→ f(g−1 · h) ∈ B

belongs to V B
gA = indH(gA)H (ψ

B
gA) where ψB

gA(g ·a) = ψB
A(a) for all a ∈ AH . It is important

to stress that V B
gA depends on g, because even if gA = A, one may have that ψB

gA ̸= ψB
A

as characters of AH . Another caution is related to the map:

Ig : f ∈ V B
A 7→ Igf ∈ V B

gA

that is not a morphism of B[H]-modules. Indeed, for h0 ∈ H, one has:

Ig(h0 · f) = (g · h0) · Igf
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whereas h0 · (Igf) = Ig((g
−1 · h0) · f).

Recall from Section 2.3 that there exists ωg ∈W such that the condition:

ψB
gA((a, 0))ψ

B
A((a, 0))

−1 = ψB(⟨a, ωg⟩)

holds for all a ∈ gA ∩ A. Then for any Haar measure µ of gA ∩ A\A, one can compose
the following morphisms of B-modules:

V B
A

Ig−→ V B
gA

IgA,A,µ,ωg−→ V B
A .

Therefore IgA,A,µ,ωg ◦ Ig ∈ EndB(V
B
A ) is uniquely defined up to a scalar of B, because the

morphism IgA,A,µ,ωg is, thanks to Proposition 2.7.
Consider now the smooth B[H]-module (ρd, IndHF (ψB)) where F is identified with

the centre of H. All the B[H]-modules V B
A naturally embed in the latter because the

restriction of ψB
A to F is ψB. Under this canonical identification for V B

A , one has:

IgA,A,µ,ωg ◦ Ig ◦ ρd(h) = ρd(g · h) ◦ IgA,A,µ,ωg ◦ Ig.

In other words IgA,A,µ,ωg ◦ Ig ∈ HomB[H]((ρd, V
B
A ), (ρgd, V

B
A )) where ρgd : h 7→ ρd(g · h).

Again in Section 2.3, invertible Haar measures are defined as unit multiples of nor-
malised Haar measures. These exactly are the measures that can take unit values on
compact open subgroups. As the linear map Ig is invertible, one easily deduces from
Proposition 2.7 that the previous endomorphism is invertible:

Lemma 3.1. If µ is invertible, then IgA,A,µ,ωg ◦ Ig ∈ GLB(V
B
A ).

As a result of the lemma, the image of the set {IgA,A,µ,ωg ◦ Ig | µ invertible} through
the quotient map:

red : GLB(V
B
A ) → GLB(V

B
A )/B× = PGLB(V

B
A )

is well defined. As already mentioned the map IgA,A,µ,ωg ◦ Ig is unique up to a scalar,
hence this image consists in a singleton; denote by Mg the single element it contains.
Remark that Mg does not depend on the choice of ωg because HomB[H](V

B
gA, V

B
A ) ≃ B

once again by Propositon 2.7, and the set of invertible elements are those in B×, which
does correspond to the choice of an invertible Haar measure.

The proposition below allows to build Weil representations with coefficients in B.

Proposition 3.2. The map σB : g ∈ Sp(W ) 7→ Mg ∈ PGLB(V
B
A ) is a group morphism

and defines a projective representation V B
A of Sp(W ). Using the fibre product construc-

tion, it lifts to a representation ωψB,V B
A

of a central extension of Sp(W ) by B× in the
following way:

S̃p
B
ψB,V B

A
(W )

ω
ψB,V B

A //

pB

��

GLB(V
B
A )

red
��

Sp(W )
σB // PGLB(V

B
A )
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where S̃p
B
ψB,V B

A
(W ) = Sp(W )×PGLB(V

B
A )GLB(V

B
A ) is the fibre product defined by the group

morphisms σB and red, together with the projection maps denoted pB and ωψB,V B
A

.

Proof. The only point that needs explanation is the claim about σB being a group morph-
ism. Let g and g′ be two elements in Sp(W ). By definition, there exists an invertible
measure µg on gA ∩A\A and an element ωg ∈W such that:

red(IgA,A,µg ,ωg ◦ Ig) =Mg.

Respectively, one can write the same type of relation for Mg′ with some µg′ and ωg′ .
An explicit computation of the composed map Ig ◦ Ig′A,A,µg′ ,ωg′ gives the existence

of an invertible measure µ on gg′A ∩ gA\gA and an element ω ∈ W such that the
commutation relation:

Ig ◦ Ig′A,A,µg′ ,ωg′ = Igg′A,gA,µ,ω ◦ Ig
holds. In addition, the morphism:

IgA,A,µg ,ω ◦ Igg′A,gA,µ,ω ∈ HomB[H](V
B
gg′A,VB

A)

is invertible because each one of the two is. Therefore Proposition 2.7 asserts the existence
of an invertible measure µgg′ on A ∩ gg′A\gg′A and an element ωgg′ ∈W such that:

IgA,A,µg ,ω ◦ Igg′A,gA,µ,ω = IgA,A,µgg′ ,ωgg′ .

The claim hence follows by using the previous two relations and applying red to:

(IgA,A,µg ,ωg ◦ Ig) ◦ (Ig′A,A,µg′ ,ωg′ ◦ Ig′).

Remark 3.3. Actually this fibre product makes sense in the category of topological
groups in the following setting. Let B and V B

A be endowed with the discrete topology.
Then the compact-open topology on GLB(V

B
A ) is generated by the prebasis of open sets

Ss,s′ = {g ∈ GLB(V
B
A ) | gs = s′} for s and s′ in V B

A . Similarly to [Tri20, Prop. 3.5],
one can prove red and σB are morphisms of topological groups. As a result of the
continuity, the fibre product is a locally profinite group for the product topology and
the representation ωψB,V B

A
is smooth. However, there is an interesting alternative way

to prove it and that is developed in the next section. It illustrates the philosophy: any
problem related to an A-algebra B may be brought back to one directly involving A.

Denote by ϕB : GLA(V
A
A ) → GLB(V

B
A ) the group morphism induced by the extension

of scalars and the canonical identification V A
A ⊗A B ≃ V B

A coming from Corollary 2.6.

Theorem 3.4. The group morphism ϕB induces a morphism of central extensions:

ϕ̃B : (g,M) ∈ S̃p
A
ψA,V A

A
(W ) 7→ (g, ϕB(M)) ∈ S̃p

B
ψB,V B

A
(W ).
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The image of ϕ̃B is a central extension of Sp(W ) by φ(A)× where φ is the structure
morphism φ : A → B. Furthemore, the following diagram commutes:

S̃p
A
ψA,V A

A
(W )

ω
ψA,VA

A //

ϕ̃B
��

GLA(V
A
A )

ϕB

��
S̃p

B
ψB,V B

A
(W )

ω
ψB,V B

A // GLB(V
B
A )

.

Proof. By definition (g,M) ∈ Sp(W )×GLA(V
A
A ) belongs to S̃p

A
ψA,V A

A
(W ) if there exists

an invertible Haar measure µ on gA∩A\A with values in A and an element ω such that
M = IgA,A,µ,ω ◦ Ig. Set µB = φ ◦ µ. Using the compatibiliy of Corollary 2.8, the equal-
ity ϕB(IgA,A,µ,ω) = IgA,A,µB,ω holds and defines an isomorphism in HomB[H](V

B
gA, V

B
A ).

Hence:
ϕB(M) = IgA,A,µB,ω ◦ Ig

with µB invertible, that is (g, ϕB(M)) ∈ S̃p
B
ψB,V B

A
(W ).

The map ϕ̃B thus defined clearly is a morphism of central extensions. In addition, an
element (g,M) belongs to its kernel if and only if g = IdW and ϕB(M) = IdV B

A
. However:

{M ∈ GLA(V
A
A ) | (IdW ,M) ∈ S̃p

A
ψA,V A

A
(W )} = {λIdV A

A
| λ ∈ A×}.

Indeed M must be of the form IgA,A,µ,ω ◦ Ig = IA,A,µ,0 = µ({0}) × IdV A
A

where µ is an
invertible measure of the singleton {0}, so there exists λ ∈ B× such that M = λIdV A

A
.

Since ϕB(λIdV A
A
) = φ(λ)IdV B

A
, the group {(IdW , λIdV A

A
) | λ ∈ Ker(φ)} ≃ Ker(φ) is the

kernel sought. The assertion on the image follows from the form of this kernel.

Because of the previous compatibility, many problems over B reduce to those over
the minimal ring A. The corollary to the proposition below illustrates this philosophy:

Proposition 3.5. Let A and A′ be two self-dual subgroups of W . Let ΦA,A′ be an
isomorphism in HomA[H](V

A
A , V

A
A′). Then ΦA,A′ induces an isomorphism of central ex-

tensions:
(g,M) ∈ S̃p

A
ψA,V A

A
(W ) 7→ (g,ΦA,A′MΦ−1

A,A′) ∈ S̃p
A
ψA,V A

A′
(W )

compatible with the projections defining the fibre products. In particular, the equivalence
class of the representation ωψA,V A

A
does not on depend A in the sense that:

ΦA,A′ ◦ ωψA,V A
A
((g,M)) ◦ Φ−1

A,A′ = ωψA,V A
A′
((g,ΦA,A′MΦ−1

A,A′))

for all (g,M) ∈ S̃p
A
ψA,V A

A
(W ).
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Proof. The existence of an isomorphism in HomA[H](V
A
A , V

A
A′) is a consequence of Pro-

position 2.7. One can consider for example any IA,A′,µ,ω as long as µ is invertible. The
fact that ΦA,A′ induces an isomorphism of central extensions is quite clear when writing
down the relations because ΦA,A′ is an isomorphism of A[H]-modules.

From Theorem 3.4 and the proposition above, one can deduce the exact same result
for coefficients in any A-algebra B. Indeed, applying ϕB to the last relation yields:

Corollary 3.6. The equivalence class of ωψB,V B
A

does not depend on A, in the sense
that for any other self-dual subgroup A′ of W , there exists an isomorphism Φ′

A,A′ in
HomB[H](V

B
A , V

B
A′) – one can take ϕB(ΦA,A′) for example – such that:

Φ′
A,A′ ◦ ωψB,V B

A
((g,M)) ◦ (Φ′

A,A′)−1 = ωψB,V B
A
((g,Φ′

A,A′M(Φ′
A,A′)−1))

for all (g,M) ∈ S̃p
B
ψB,V B

A′
(W ).

4 The metaplectic group over A
The notations are those of Section 3. To quickly recall the context: let B be an A-algebra,
let A be a self-dual subgroup of W and V B

A = indHAH (ψ
B
A) be the smooth B[H]-module

built in Section 2.2, where ψB
A is an extension of ψB in the way of Lemma 2.3.

In Section 3, we constructed a projective representation σB : Sp(W ) → PGLB(V
B
A ) of

the symplectic group and, in Proposition 3.2, we lifted it to a representation (ωψB,V B
A
, V B

A )

of a central extension of Sp(W ) by B×, namely:

ωψB,V B
A
: S̃p

B
ψB,V B

A
(W ) → GLB(V

B
A ).

Recall that the group on the left-hand side is the fibre product in the category of groups
of the group morphisms σB : Sp(W ) → PGLB(V

B
A ) and red : GLB(V

B
A ) → PGLB(V

B
A ),

together with the projection maps pB and ωψB,V B
A

. As a result of this construction, it is
a subgroup of Sp(W )× GLB(V

B
A ). In particular, these constructions make sense over A

itself, and Theorem 3.4 completes the picture relating the constructions over A and over
any A-algebra B, yielding a morphism of central extensions:

ϕ̃B : S̃p
A
ψA,V A

A
(W ) → S̃p

B
ψB,V B

A
(W )

compatible with the respective projection maps.

4.1 A bit of tolopolgy

This section will shed some light on Remark 3.3 by bringing topology into the construction
of Proposition 3.2. Endow B and V B

A with the discrete topology. Then the open-compact
topology on GLB(V

B
A ) is generated by the prebasis Ss,s′ = {M ∈ GLB(V

B
A ) | Ms = s′}

for s and s′ running through V B
A .
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The group PGLB(V
B
A ) inherits the quotient topology, which is the finest making the

quotient map red : GLB(V
B
A ) → PGLB(V

B
A ) continuous. Recall from Proposition 3.4

that the projective representation σB : Sp(W ) → PGLB(V
B
A ) was defined in terms of the

action of Sp(W ) on H.

The complex case. The best-known feature comes when B is the field of complex
numbers. Endowing C with a structure of A-algebra amounts to fixing an embedding
φ : A → C. Observe that all such embeddings have the same image in C, because K/Q
is a Galois extension. In particular, the image of the map A× → C× induced by φ does
not depend on the choice of φ.

So when B = C and φ is fixed, the representation V C
A ∈ RepC(H) is irreducible as an

application of Stone-von Neumann’s theorem [MVW87, Chap. 2, Th. I.2] and :

• ωψC,V C
A

is the Weil representation of the metaplectic group S̃p
C
ψC,V C

A
(W ).

The complex theory asserts that the Weil representation is smooth and the metaplectic
group is a natural topological subgroup of Sp(W ) × GLC(V

C
A ). To be more precise, the

metaplectic group is a locally profinite group. Regarding the smoothness condition, this
is equivalent to saying that the map ωψC,V C

A
is continuous.

These topological properties are consequences of the continuity of the map σC, which
really is the cornerstone of the theory; and the metaplectic group inherits a natural
topology as the fibre product in the category of topological groups of the continuous
group morphisms red and σC.

Over A. By analogy, one calls S̃p
A
ψA,V A

A
(W ) the metaplectic group over A. Referring

to Theorem 3.4, it is a subgroup of the metaplectic group because the group morphism:

ϕ̃C : (g,M) ∈ S̃p
A
ψA,V A

A
(W ) → (g, ϕC(M)) ∈ S̃p

C
ψC,V C

A
(W )

is injective.

Lemma 4.1. The map ϕC : M ∈ GLA(V
A
A ) → ϕC(M) ∈ GLC(V

C
A ), coming from the

scalar extension to C, is continuous and defines an homeomorphism onto its image.

Proof. The image of ϕC is endowed with the subspace topology from GLC(V
C
A ). The

map ϕC is continuous and injective, so it defines a bijection to its image, say GA. Denote
ϕ′C : GA → GLA(V

A
A ) the inverse map. Then for all s and s′ in V A

A , one has:

(ϕ′C)
−1(Ss,s′) = {ϕC(M) | M ∈ GLA(V

A
A ) and ϕC(M)(s⊗C 1) = s′ ⊗C 1}

= GA ∩ Ss⊗C1,s′⊗C1

that is the trace of an open set. So (ϕ′C)
−1(Ss,s′) is open in GA and ϕ′C is continuous.

Of course, the embedding Sp(W )×GLA(V
A
A ) → Sp(W )×GLC(V

C
A ) induced by ϕC is

an homeomorphism onto its image as well. As a result of the lemma, the subspace topo-
logy on Sp(W )×GLA(V

A
A ), inherited from that of Sp(W )×GLC(V

C
A ) using the previous
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embedding, coincides with the usual product topology. Restricting this morphism to the
metaplectic group over A, which is a subgoup of Sp(W )× GLA(V

A
A ), exactly yields ϕ̃C.

Because of the homeomorphism property, one can identify the metaplectic group over A
and its image under ϕ̃C, resulting in:

Corollary 4.2. The group S̃p
A
ψA,V A

A
(W ) is a topological subgroup of S̃p

C
ψC,V C

A
(W ), the

inclusion being canonically given by ϕ̃C. In addition ϕ̃C is an open embedding.

Proof. The fact that it is a topological subgroup follows from Lemma 4.1 and the sub-
sequent discussion. The map ϕ̃C is open because its image is open in the metaplectic
group. Indeeed the first projection of the fibre product yields an exact sequence:

1 → C× → S̃p
C
ψC,V C

A
(W ) → Sp(W ) → 1.

Because K/Q is a Galois extension, the image φ(A×) of A× does not depend on φ and
always contains {±1}. As a result, the following diagram is commutative:

1 C× S̃p
C
ψC,V C

A
(W ) Sp(W ) 1

1 A× S̃p
A
ψA,V A

A
(W ) Sp(W ) 1

φ ϕ̃C IdSp(W )

and the group S̃p
A
ψA,V A

A
(W ) contains the reduced metaplectic group Ŝp

C
ψC,V C

A
(W ), that is

the derived group of the metaplectic group.
When F is local non-archimedean, this is the unique subgroup of the metaplectic

group fitting into the exact sequence:

1 → {±1} → Ŝp
C
ψC,V C

A
(W ) → Sp(W ) → 1.

Furthermore this reduced metaplectic group is open in the metatplectic group, so the
claim follows because the metaplectic group over A contains it. When F is finite, the
topology can just be ignored as these groups are finite and have discrete topolgy.

As above, denote by Ŝp
C
ψC,V C

A
(W ) the derived group of S̃p

C
ψC,V C

A
(W ). When F is finite,

this group is the derived group of Sp(W ). Except in the exceptional case F = F3 and
dim(W ) = 2, the symplectic group is perfect i.e. equal to its own derived subgroup.
When F is local archimedean it is the so-called reduced metaplectic group, which is a
non-trivial extension of Sp(W ) by {±1}. Actually there exists a unique such (open)
subgroup in the metaplectic group. Regardless of what F may be, we use brackets to
define the derived group:

Ŝp
A
ψA,V A

A
(W ) = [S̃p

A
ψA,V A

A
(W ), S̃p

A
ψA,V A

A
(W )].

Recall that ϕ̃C canonically identifies S̃p
A
ψA,V A

A
(W ) with its image in S̃p

C
ψC,V C

A
(W ). It also

induces, by restriction, a map between the respective derived groups.
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Proposition 4.3. One has the following properties:

a) the map σA is continuous and S̃p
A
ψA,V A

A
(W ) is the fibre product in the category of

topological groups of the continuous morphisms red and σA;

b) the representation ωψA,V A
A

: S̃p
A
ψA,V A

A
(W ) → GLA(V

A
A ) is smooth as this group

morphism is the second projection of the fibre product;

c) the group S̃p
A
ψA,V A

A
(W ) is open in S̃p

C
ψC,V C

A
(W ) and therefore the metaplectic group

over A is locally profinite;

d) the map ϕ̃C restricts to an isomorphism Ŝp
A
ψA,V A

A
(W ) ≃ Ŝp

C
ψC,V C

A
(W ) and when:

i) F is finite, it is the symplectic group except when F = F3 and dim(W ) = 2;
ii) F is local non-archimedean, it is the reduced metaplectic group.

Proof. a) The map σA is continuous, because σC itself is, and one has:

σA = ϕC ◦ σC
where ϕC : PGLA(V

A
A ) → PGLC(V

C
A ) is the continuous group morphism defined from

ϕC by passing to the quotient. The fibre product of σA and red in the category of
topological groups defines a topological subgroup of Sp(W ) × GLA(V

A
A ). In particular,

this fibre product is, as a group, the metaplectic group over A.
b) The projection maps are continuous by definition of the fibre product.
c) As a direct consequence of ϕ̃C being an open embedding, the group S̃p

A
ψA,V A

A
(W ) is an

open subgroup of the metaplectic group, which is locally profinite. Hence it is a closed
subgroup, so the subspace topology is the locally profinite one.
d) The isomorphism follows considering the first projection pA : Ŝp

A
ψA,V A

A
(W ) → Sp(W ).

This map is surjective, and so is pC. In addition one has the equality:

pC ◦ ϕ̃C = pA.

Passing to derived groups yields:

D(pC) : Ŝp
C
ψC,V C

A
(W ) → [Sp(W ), Sp(W )].

It is an isomorphism in case i) and a surjective morphism of kernel {±1} for ii). But
through the identification given by ϕ̃C, one has the inclusion:

Ŝp
A
ψA,V A

A
(W ) ⊂ Ŝp

C
ψC,V C

A
(W )

and D(pC) ◦ ϕ̃C is surjective. In case i), the previous inclusion is an equality and except
in the exceptional case mentioned the symplectic group is perfect. In case ii), this implies
the following inequality for the index of the quotient:

[Ŝp
C
ψC,V C

A
(W ) : Ŝp

A
ψA,V A

A
(W )] ≤ 2.

It must be 2 as the reduced metaplectic group cannot be split over Sp(W ).
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Over B. Call S̃p
B
ψB,V B

A
(W ) the metaplectic group over B and define its derived group:

Ŝp
B
ψB,V B

A
(W ) = [S̃p

B
ψB,V B

A
(W ), S̃p

B
ψB,V B

A
(W )].

As above, the morphism of central extensions of Theorem 3.4:

ϕ̃B : (g,M) ∈ S̃p
A
ψA,V A

A
(W ) → (g, ϕB(M)) ∈ S̃p

B
ψB,V B

A
(W )

retricts to a morphism at the level of derived groups. As ϕB is continuous, it defines a
continuous map ϕB : PGLA(V

A
A ) → PGLB(V

B
A ) at the level of quotients. Then one has

the equality σB = ϕB ◦ σA and one deduces from Propostion 4.3 that σB is continuous.

Proposition 4.4. One has the following properties:

a) the group S̃p
B
ψB,V B

A
(W ) is the fibre product in the category of topological group of

the continuous morphisms σB and red, its topology being the subspace topology in
Sp(W )× GLB(V

B
A );

b) the representation ωψB,V B
A

: S̃p
B
ψB,V B

A
(W ) → GLB(V

B
A ) is smooth as this group

morphism is the second projection of the fibre product;

c) the map ϕ̃B : (g,M) ∈ S̃p
A
ψA,V A

A
(W ) → (g, ϕB(M)) ∈ S̃p

B
ψB,V B

A
(W ) is an open

continuous map and therefore the metapletic group over B is locally profinite;

d) considering derived groups, the map ϕ̃B restricts to:

i) a surjection Ŝp
A
ψA,V A

A
(W ) → Ŝp

B
ψB,V B

A
(W ) of kernel {±1} and image iso-

morphic to Sp(W ) if F is local non-archimedean and char(B) = 2;

ii) an isomorphism Ŝp
A
ψA,V A

A
(W ) ≃ Ŝp

B
ψB,V B

A
(W ) otherwise.

Proof. a) b) Obvious from the definition of fibre products and projections.
c) This needs some explanation however. Once again when F is finite, the topology is
dicrete and the statement trivially holds. Suppose now that F is local non-archimedean.
As a first observation, remark that the equality ϕB ◦ ωψA,V A

A
= ωψB,V B

A
◦ ϕ̃B holds.

Let v ∈ V A
A such that v⊗A 1 ∈ V B

A is non-zero. Because of the previous equality, the
stabiliser of v ⊗A 1 will be contained in the image of ϕ̃B as a result of the following two
facts. First, one has :

ωψB,V B
A
(g, λM)(v ⊗A 1) = λM(v ⊗A 1)

for all (g,M) ∈ S̃p
B
ψB,V B

A
(W ) and λ ∈ B×. Not much has been said so far. Second, the

surjectivy of pA and pB onto Sp(W ) implies that for all (g,M) ∈ S̃p
B
ψB,V B

A
(W ), there

exists λ ∈ B× such that (g, λM) is in the image of ϕ̃B.
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Combining the previous two facts, the stabiliser of v ⊗A 1 must be included in the
image of ϕ̃B. So the image of ϕ̃B is open because the stabiliser of any element is open as
a consequence of ωψB,V B

A
being smooth.

The image of ϕ̃B is an open subgroup in the metaplectic group over B. If this subgroup
is a locally profinite group, then the metaplectic group will be too. Using Theorem 3.4,
one has an exact sequence:

1 → Ker(ϕ̃B) → S̃p
A
ψA,V A

A
(W )

ϕ̃B→ Im(ϕ̃B) → 1.

where Ker(ϕ̃B) = {(IdW , λIdV A
A
) | λ ∈ A× and φ(λ) = 1} ≃ Ker(A× → φ(A)×) is

a discrete subgroup, so a closed subgroup. Thanks to Proposition 4.3 the metaplectic
group over A is locally profinite, so its quotient by the previous discrete subgroup is
locally profinite and ϕ̃B factors through it, inducing an homeomorphism of topological
groups.
d) First of all, there is an induced map between derived subgroups:

D(ϕ̃B) : Ŝp
A
ψA,V A

A
(W ) → Ŝp

B
ψB,V B

A
(W ).

But pB ◦D(ϕ̃B) = D(pA) is a surjective map Ŝp
A
ψA,V A

A
(W ) → [Sp(W ), Sp(W )], which is

an isomorphism in case i) and has kernel {±1} in case ii) according to Proposition 4.3.
Therefore:

S̃p
B
ψB,V B

A
(W )/Im(D(ϕ̃B))

is abelian. By minimality of the derived group, we must have Im(D(ϕ̃B)) = Ŝp
B
ψB,V B

A
(W ).

Furthermore:

Ker(D(ϕ̃B)) = {(IdW , λIdV A
A
) | λ ∈ A× and φ(λ) = 1} ∩ Ŝp

A
ψA,V A

A
(W ).

When F is finite, the group Ker(D(ϕ̃B)) = {(IdW , IdV A
A
)} is trivial. When F is local

non-archimedean, it is included in {(IdW , ϵIdV A
A
) | ϵ ∈ {±1}} ≃ {±1}. But this kernel is

non-trivial if and only if φ(−1) = φ(1) = 1 in B, that is φ(2) = 0, and char(B) = 2.

Definition 4.5. Let ϕ̂B : Ŝp
A
ψA,V A

A
(W ) → S̃p

B
ψB,V B

A
(W ) be the restriction ϕ̃B|Ŝp

A
ψA,VA

A
(W )

.

This map will be used later on. Proposition 4.4 has already given some key properties
of this map: just to mention a few, it is an open map and its kernel is explicit.

4.2 Reduced cocycle for A-algebras

One deduces from Proposition 4.4 that the metaplectic group over B either:

• contains the symplectic group as a subgroup, then char(B) = 2 or F is finite;

• does not contain the symplectic group as a subgroup, in which case F is local non-
archimedean and char(B) ̸= 2, and its derived group is canonically isomorphic to
the so-called reduced metaplectic group.
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In practice, it is important to describe the explicit group law of the metaplectic group
for applications. In the first case for instance, it is useful to have a precise formula
for the embedding of the symplectic group inside the (split) metaplectic group. In the
second case, there are important subgroups that are known to be split, such as inverse
images of compact open subgroups, parabolic subgroups, Levi subgroups and unipotent
radicals. However, there is a priori no guarantee that these groups are split in the
reduced metaplectic even though they may be split in the metaplectic group. In order
to do computations, one needs to express the cocycle which controls the group law of
the reduced metaplectic group. This cocycle usually involves the so-called Weil factor,
which is ill-defined when the A-algebra B does not contain a square root of q. This is
the reason why we develop a non-normalised version of it.

4.2.1 Non-normalised Weil factor over B

The definition of the non-normalised Weil factor, achieved over fields in [Tri20, Sec. 1.1],
generalises to A-algebras as explained below. Let X be a vector space over F of finite
dimension m. Let µA be an invertible Haar measure of X with values in A.

Proposition 4.6. Let Q be a non-degenerate quadratic form on X. Then there exists a
unique non-zero element ΩµA(ψA ◦Q) in A such that for all f ∈ C∞

c (X,A), one has:∫
X

∫
X
f(y − x)ψA(Q(x))dµA(x)dµA(y) = ΩµA(ψ

A ◦Q)

∫
X
f(x)dµA(x).

For any sufficiently small open compact subgroup K in X, the condition for smallness
being “ψA(Q(u)) = 1 for all u ∈ K”, this factor explicitely reads:

ΩµA(ψ
A ◦Q) =

∑
x̄∈K′/K

ψA(Q(x̄))

where K ′ = {y ∈ X | ∀u ∈ K,ψA(Q(y−u)−Q(y)) = 1} is a compact open subgroup too.

Proof. The existence of such an element ΩµA(ψ
A ◦ Q) comes from the definition of the

non-normalised Weil factor over fields and from computation, as examined below.
Indeed, the ring A is naturally contained in its field of fractions K, and the measure

µA can be thought of as having values in K. So there exists [Tri20, Prop. 1.2] a non-zero
element ΩµA(ψ

A ◦Q) in K, which achieves the first equality of the statement. A direct
computation when f = 1K and ψA(Q(K)) = 1 gives:∫

X
1K(y − x)ψA(Q(x))dµA(x) = ψA(Q(y))µA(K)× 1K′(y)

where one easily checks from the definition that K ′ is a compact open subgroup of X.
In addition it contains K. Applying µA to the previous equality leads to:

ΩµA(ψ
A ◦Q)× µA(1K) = vol(K)

∑
x̄∈K′/K

ψA(Q(x̄))

where µA(1K) = vol(K) ∈ A× because µ is invertible, resulting in the last equality.
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Let now µ be a Haar measure of X with values in B. Denote λµ the unique element
in B such that µ = λµ×µB, where µB = φ ◦µA is an invertible Haar measure. Applying
φ to the equalities in the previous proposition yields:

Corollary 4.7. Let Q be a non-degenerate quadratic form on X. Then there exists a
unique element Ωµ(ψB ◦Q) in B such that for all f ∈ C∞

c (X,B), one has:∫
X

∫
X
f(y − x)ψB(Q(x))dµ(x)dµ(y) = Ωµ(ψ

B ◦Q)

∫
X
f(x)dµ(x).

Furthermore:
Ωµ(ψ

B ◦Q) = λµ × φ
(
ΩµA(ψ

A ◦Q)
)
.

When Q is a quadratic form on X, one denotes rad(Q) its radical. Observe that Q
is non-degenerate if and only if rad(Q) = 0. The non-degenerate quadratic form Qnd
associated to Q is the non-degenerate quadratic form induced by Q on X/rad(Q).

Definition 4.8. Let Q be a quadratic form on X. Let µ be Haar measure of X/rad(Q)
with values in B. The non-normalised Weil factor is defined by:

• Ωµ(ψ
B ◦Q) := µ({0}) if Q is the zero quadratic form;

• Ωµ(ψ
B ◦Q) := Ωµ(ψ

B ◦Qnd) otherwise.

Lemma 4.9. One has :
ΩµA(ψ

A ◦Q) ∈ A×.

In particular for any invertible Haar measure µ with values in B:

Ωµ(ψ
B ◦Q) ∈ B×.

Proof. Let K → C be an embedding of K into C and φC its restriction to A. The factor
ΩµA(ψ

A ◦ Q) can be thought of as the factor ΩµC(ψ
C ◦ Q) = φC(ΩµA(ψ

A ◦ Q)) where
µC = φC ◦ µA is an invertible Haar measure. Then point f) of [Tri20, Prop. 1.5] gives:

ΩµC(ψ
C ◦Q) = ωψC(ψC ◦Q)× |ρ|

1
2

µC

where ωψC(ψC ◦ Q) is an 8th root of unity and |ρ|µC = µC(K)(q
1
2 )k, with K a compact

open subgroup of X, a square root q
1
2 of q in C and an integer k ∈ Z. So:

ΩµC(ψ
C ◦Q)8 = (µC(K))8q4k.

Therefore ΩµA(ψ
A ◦ Q)8 = (µA(K))8q4k ∈ A× because φC is injective and Q-linear,

implying the result about the factor being invertible. Hence the second equality results
from applying φ and Corollary 4.7, given the fact that λµ ∈ B×.

Define for a in F× the quadratic form Qa : x ∈ F 7→ ax2 ∈ F . Then the factor:

ΩA
a,b =

ΩµA(ψ
A ◦Qa)

ΩµA(ψ
A ◦Qb)

∈ A×

does not depend on the choice of the invertible Haar measure µA, as the notation suggests.
One can define ΩB

a,b in the obvious way, either as a quotient of two non-normalised Weil
factors or as the image of the previous using the map φ.
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4.2.2 Section ςB giving the cocycle

Let X be a lagrangian of W . In particular this provides an instance of a self-dual
subgroup in W . A nice section ςA : Sp(W ) → S̃p

A
ψA,V A

X
(W ) of pA is defined below. It is

nice in the sense that it will give the explicit group law in the metaplectic group over A.
First of all, observe that, using the notation of Section 3, any section ς of pA is given

by a family (µg)g∈Sp(W ) of measures where µg is an invertible measure of gX ∩ X\X.
Namely it reads ς : g 7→ (g, IgX,X,µg ,0◦Ig). One defines the section ςA mentioned above in
the following way. The stabiliser P (X) of X in Sp(W ) is a maximal parabolic subgroup.
For g ∈ Sp(W ), let µg be the invertible measure on gX ∩X\X defined by:

µg = ΩA
1,detX(p1p2)

× ϕ1 · µAwj

where:

• (wj)j=0...m is a system of representatives in Sp(W ) for P (X)\Sp(W )/P (X);

• the element g = p1wjp2 ∈ P (X)wjP (X) with p1 and p2 in P (X);

• detX(p) = detF (p|X) where p|X ∈ GL(X) ≃ GLm(F );

• gX ∩X\X
ϕ1≃ wjX ∩X\X is induced by x ∈ X 7→ p−1

1 x ∈ wjX ∩X\X;

• Qj(x) =
1
2⟨wjx, x⟩ is the non-degenerate quadratric form on wjX ∩X\X;

• for any invertible µ, set µAwj = Ωµ(ψ
A ◦Qj)−1µ which does not depend on µ.

See [Tri20, Sec. 3.5] to get a more detailed explanation about the previous definitions.
Exclude the exceptional case F = F3 and dim(W ) = 2 from now on.

Proposition 4.10. With the previous choice of µg, the section:

ςA : g ∈ Sp(W ) 7→ (g, IgX,X,µg ,0 ◦ Ig) ∈ S̃p
A
ψA,V A

X
(W )

has values in Ŝp
A
ψA,V A

X
(W ), except in the exceptional case F = F3 and dim(W ) = 2. The

2-cocycle defined by this section:

ĉA : (g1, g2) ∈ Sp(W )× Sp(W ) 7→ ςA(g1)ς
A(g2)ς

A(g1g2)
−1 ∈ A×

is trivial when F is finite, and has image {±1} when F is local non-archimedean.

Proof. Consider an embedding K → C and denote φC its restriction to A. The map:

ϕ̃C : (g,M) ∈ S̃p
A
ψA,V A

A
(W ) → (g, ϕC(M)) ∈ S̃p

C
ψC,V C

A
(W )

and the compatibility ϕC(IgX,X,µA,0) = IgX,X,µC,0 from Corollary 2.8 where µC = φC◦µA,
leads to:

ϕ̃C ◦ ςA(g) = (g, IgX,X,φC◦µg ,0 ◦ Ig).
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But the measure φC ◦ µg above is the one defined in [Tri20, Lem. 3.23], and according
to [Tri20, Th. 3.27], the map ϕ̃C ◦ ςA is a section of pC whose associated cocycle is
trivial when F is finite, and has values in the reduced metaplectic group when F is local
non-archimedean. The associated cocycle ĉC is trivial when F is finite and has image
{±1} when F is local non-archimedean. Using point d) of Proposition 4.3, the image of
ςA lies in Ŝp

A
ψA,V A

X
(W ), except in the exceptional case F = F3 and dim(W ) = 2. In any

case, the map ςA is injective so this defines a section of pA. In particular, it is a group
morphism when F is finite as a result of the cocycle ĉC being trivial.

One easily deduces from the previous proposition and Proposition 4.4, the corollary:

Corollary 4.11. The section ςB = ϕ̃B ◦ ςA has values in Ŝp
B
ψB,V B

X
(W ), except in the

exceptional case F = F3 and dim(W ) = 2. The 2-cocycle defined by this section:

ĉB : (g1, g2) ∈ Sp(W )× Sp(W ) 7→ ςB(g1)ς
B(g2)ς

B(g1g2)
−1 ∈ B×

is trivial when F is finite or char(B) = 2, and has image {±1} otherwise.

Remark 4.12. In the exceptional case, the section ςA, resp. ςB, can still be defined.
However the derived group [Sp(W ), Sp(W )] is a strict subgroup of the symplectic group
Sp(W ). So the image of the previous sections, which are again group morphisms, is just
a subgroup of the metaplectic group over A, resp. over B, that is isomorphic to Sp(W ).

5 Families of Weil representations

Consider the map ϕ̂B : Ŝp
A
ψA,V A

A
(W ) → S̃p

B
ψB,V B

A
(W ) of Definition 4.5. The exceptional

case F = F3 and dim(W ) = 2 needs separate treatment, which will be done as a quick
remark, so we exclude it from now on.

Let H be a closed subgroup of Sp(W ) and set:

H̃A = p−1
A (H) and H̃B = p−1

B (H).

Denote by ĤA the intersection of H̃A and Ŝp
A
ψA,V A

A
(W ). Recall that φ : A → B is the

structure morphism of the A-algebra B and consider the categories:

Rep′
B(Ĥ

A) = {(π, V ) ∈ RepB(Ĥ
A) | π((IdW , ϵIdV A

A
)) = φ(ϵ)IdV for ϵ ∈ {±1}}

and:

Rep′
B(H̃

B) = {(π, V ) ∈ RepB(H̃
B) | π((IdW , λIdV B

A
)) = λIdV for λ ∈ B×}.

Proposition 5.1. The functor:

(π, V ) ∈ Rep′
B(H̃

B) 7→ (π ◦ ϕ̂B, V ) ∈ Rep′
B(Ĥ

A)

defines an equivalence of categories.
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Proof. This map is a functor and its inverse is given by the extension of scalars to B×,
that is for any (π′, V ′) ∈ Rep′

B(Ĥ
A), the representation:

π′′ : (ĥ, λ) ∈ ĤA × B× 7→ λπ′(ĥ) ∈ GLB(V
′)

factorises as a representation of H̃B. Indeed, the surjective group morphism:

(ĥ, λ) ∈ ĤA × B× → ϕ̂B(ĥ)× (IdW , λIdV B
A
) ∈ H̃B

is an isomorphism when F is finite and has kernel {((IdW , ϵIdV A
A
), φ(ϵ)) | ϵ ∈ {±1}}

when F is local non-archimedean. But Ker(π′′) contains the kernel of the surjective map
above, that is it factorises as claimed.

Remark 5.2. The reason for proving such a result is to consider the “same” group for
any A -algebra B, which is particularly convenient when looking at scalar extension for
representations. For instance, the representation ωψA,V A

A
⊗AB ∈ Rep′

B(Ĥ
A), which is the

scalar extension of ωψA,V A
A

∈ Rep′
A(Ĥ

A), should be the “same” – the proposition below

making this “same” precise – representation as ωψB,V B
A
∈ Rep′

B(H̃
B).

Remark 5.3. In the exceptional case however, because the symplectic group Sp(W )

is isomorphic to SL2(F3), the derived group Ŝp
A
ψA,V A

A
(W ) is a strict subgroup of the

symplectic group. One needs to replace ϕ̂B by any morphism that embeds Sp(W ) in the
metaplectic group over A, composed with ϕ̃B. One can take for example the embeddings
ςA and ςB according to Remark 4.12.

From the previous proposition and Theorem 3.4, the following compatibility holds:

Proposition 5.4. The representations ωψA,V A
A

⊗A B and ωψB,V B
A

are isomorphic, in
the sense that the canonical identification V A

A ⊗A B ≃ V B
A of Corollary 2.6 induces an

isomorphism in Rep′
B(Ĥ

A), namely:

(ωψA,V A
A

⊗A B, V A
A ⊗A B) ≃ (ωψB,V B

A
◦ ϕ̂B, V B

A ).

Of course when R is a field endowed with an A-algebra structure, the representation
(ωψR,V RA

, V R
A ) is the modular Weil representation on W associated to ψR and V R

A , in
the way they are defined in [MVW87, Chap. 2,II] for R = C and in [Tri20, Sec. 3] for
more general fields. Recall that in this situation V R

A is the metaplectic representation
associated to ψR.

Dual pairs. When (H1, H2) is a dual pair in Sp(W ), one may fix a model for the
Weil representation and “embed” the lift of the dual pairs in the derived subgroup of
the metaplectic group over A through the natural multiplication map. One can also use
the lifts in the metaplectic group over A instead of the derived subgroup. This means
looking at the representation:

ωψB,V B
A
◦ ϕ̂B|

Ĥ1
A
×Ĥ2

A ∈ RepB(Ĥ1
A
× Ĥ2

A
)
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where the restriction Ĥ1
A
×Ĥ2

A
→ Ŝp

A
ψA,V A

A
(W ) is achieved using the natural multiplic-

ation map. Of course, when these lifts of dual pairs are split, one can always compose
with their splittings to get representations of H1 or H2 themselves. It may happen that
splittings do not exist in the derived subgroup even if they do exist in the metaplectic
group itself [MVW87, Chap. 2, Rem. II.9] and [Tri20, Sec. 4]. So one may switch hats
for tildas depending on the dual pair one wants to consider.

6 Features of the pair (GL1(F ),GL1(F ))

Suppose F is a local non-archimedean field. Let W be a symplectic space over F of
dimension 2 and W = X + Y be a complete polarisation. For a ∈ F×, define ma to be
the unique endomorphism in Sp(W ) such that in the previous basis:

ma =

[
a 0
0 a−1

]
.

The pair (H1, H2) = (F×, F×) is defined by (a1, a2) 7→ ma1ma−1
2

. Up to some smooth
characters of H1 and H2, the Weil representation ωH1,H2 is the “geometric” representation
(ρ, C∞

c (F,B)) where H1 and H2 act respectively on the left and on the right on the locally
profinite space F . For f ∈ C∞

c (F,B) and a1, a2 ∈ F×, it reads:

ρ(a1, a2) · f : x ∈ F 7→ f(a−1
1 xa2) ∈ B.

6.1 Level 0 part

The category RepB(F
×) is decomposed as a product of categories

∏
k∈N RepkB(F×) where

the index k is also known as the level. In this picture, the level 0 subcategory has the
most direct descripition as it corresponds to representations with trivial action of the
biggest pro-p-subgroup K of F× which is, after choosing a uniformiser ϖF of F , the
group K = 1 + ϖFOF . In addition the isomorphism (k, u) ∈ Z × O×

F 7→ ϖk
Fu ∈ F×

induces an isomorphism F×/K ≃ Z × (Z/(q − 1)Z). Suppose from now on a choice
of uniformiser ϖF is made as well as a choice of a primitive (q − 1)-root of unity ζq−1

in F . Hence in the free part Z is generated by ϖF and the torsion part Z/(q − 1)Z
is generated by ζq−1. So the group algebra B[F×/K] is isomorphic to the B-algebra
B[X±1, Z]/(Zq−1 − 1), where ϖF corresponds to X and ζq−1 to Z.

The level 0 category. As we are only interested in the level 0 part, we shall only
consider, for any V ∈ RepB(F

×), the direct factor representation V K made ofK-invariant
vectors. As for the representation (ρl, C

∞
c (F,B)) given by the left F×-action, this level 0

part is the subspace of bi-K-invariant functions:

C∞
c (F,B)K = {f ∈ C∞

c (F,B) | ∀x ∈ F and k ∈ K, f(xk) = f(kx) = f(x)}.

In addition, the center z0 of the level 0 category Rep0
B(F

×) is, because the group F× is
abelian, equal to the endomorphism ring of a minimal progenerator of Rep0

B(F
×). Let
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(1K ,B) be the free module B of rank 1 with trivial K-action. Then indF
×

K (1K) is known
to be a progenerator of Rep0

B(F
×). As a space of functions this also is C∞

c (F×/K,B),
which is a free module of rank 1 over B[F×/K] generated by the characteristic function
1K . Therefore:

EndF×(indF
×

K (1K)) = EndB[F×/K](indF
×

K (1K)) ≃ B[F×/K]

thanks to indF
×

K (1K) being free of rank 1. So one can consider that the center z0 is
B[F×/K] ≃ B[X±1, Z]/(Zq−1 − 1). Eventually, the level 0 category is equivalent to the
category of modules over the latter commutative ring.

6.1.1 Specialisation using the center

Morphism of the center. Let C be a commutative B-algebra. Let η ∈ HomB−alg(z
0, C)

be a morphism of B-algebras. Of course η naturally endows C with a z0-algebra structure.
In addition, any representation in Rep0

B(F
×) is canonically endowed with a z0-module

structure. By definition, this z0-module structure commutes with the F×-action.

Definition 6.1. For any V ∈ Rep0
B(F

×), one defines the representation:

Vη = V ⊗z0 η ∈ RepC(F
×).

Examples. Recall z0 = B[X±1, Z]/(Zq−1 − 1). The following are easy claims:

• when B is a field and χ : F×/K → B× is a character, the B-algebra morphism:

ηχ : P ∈ B[X±1, Z]/(Zq−1 − 1) 7→ P (χ(ϖF ), χ(ζ)) ∈ B

provides the biggest χ-isotypic quotient Vηχ = Vχ. Furthermore:

Ker(ηχ) = (X − χ(ϖF ), Z − χ(ζ)).

• when φ : B → B′ is a morphism of B-algebras, the B-algebra morphism:

ηφ : P ∈ B[X±1, Z]/(Zq−1 − 1) → φ(P ) ∈ B′[X±1, Z]/(Zq−1 − 1)

provides the extension of scalars Vηφ = V ⊗B B′. Furthermore:

Ker(ηφ) = Ker(φ) · z0.

• let χ be a character with values in B×, let m a maximal ideal in B, and denote by
φm the quotient morphism B → B/m and χm = φm ◦ χ, then:

(Vηχ)ηφm = (Vηφm )ηχm i.e. Vηχ ⊗B (B/m) = (V ⊗B (B/m))χm .

Therefore the representation Vηχ may be viewed as a family of representations
specialising at maximal ideals to biggest isotypic quotients, whereas it is less clear
how direct methods would give a good definition of an isotypic quotient over a ring.

Remark 6.2. Unlike the construction of the biggest isotypic quotient for irreducible
representations with coefficients in a field, the natural map V 7→ Vη is not surjective in
general. Of course if η is surjective, the previous map is a quotient map.
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6.1.2 Isotypic families of the Weil representation

Level 0 Weil representation. Instead of considering representations with coefficients
over different rings, this approach benefits from a greater flexbility when dealing with
the level 0 Weil representation C∞

c (F,B)K . For example in the second situation with
φ ∈ HomB−alg(B,B′), and thanks to the description as spaces of functions, one has:

(C∞
c (F,B)K)ηφ = C∞

c (F,B′)K .

Family for the trivial representation. Set V = C∞
c (F,B)K and V0 = C∞

c (F×,B)K .
Recall there is an exact sequence of representations, that is given by the function restric-
tion to the closed set {0} in F , namely:

0 → V0 → V → 1B
F× → 0

where 1B
F× is a free B-module of rank 1 endowed with the trivial F×-action. Consider now

the ideal I1 = (X−1, Z−1) in z0 and the morphism η1 : z0 → z0/I1. As (1B
F×)η1 = 1B

F× ,
and V0 is free of rank 1 over z0, it induces an exact sequence:

1B
F× → Vη1 → 1B

F× → 0.

The kernel of the map B → Vη1 is (q − 1)B because:

((X − 1)V + (Z − 1)V ) ∩ V0 = (X − 1)V0 + (Z − 1)V0 + (q − 1)V0.

So the following sequence is exact:

0 → 1B/(q−1)B
F× → Vη1 → 1B

F× → 0.

Denoting by β the image of 1OF in Vη1 , the above sequence splits as b ∈ B 7→ b · α ∈ Vη1
is a section of Vη1 → 1B

F× . So one has Vη1 ≃ 1B/(q−1)B
F× ⊕ 1B

F× .

The family for (X − q, Z − 1). It does not coincide with the family for the trivial
representation, except at the non-banal prime ideals. These are the prime ideals P in
B such that P ∩ Z is generated by a prime ℓ dividing q − 1. Denoting η the character
z0 → z0/(X − q, Z − 1) and (χB,B) the character such that χB(ζ) = 1 and χB(ϖF ) = q,
one similarly has:

0 → χB → Vη → 1B/(q−1)B
F× → 0.

Indeed on the one hand (X − 1)1B
F× + (Z − 1)1B

F× = (1− q)1B
F× so (1B

F×)η = 1B/(q−1)B
F× .

On the other hand V0 is z0-free so (V0)η = χB. Denote by α and β the images of 11+ϖFOF
and 1OF in Vη. The following computation helps identifying the (q − 1)-torsion:

(X − 1)β = (q − 1)α = (X − q)β + (1− q)β = (q − 1)β.

Then λ ∈ B 7→ λ(β−α) ∈ Vη factorises as a section of Vη → 1B/(q−1)B
F× . As a consequence,

one has Vη ≃ 1B/(q−1)B
F× ⊕ χB.

Remark 6.3. We interpret 1B/(q−1)B
F× as the greatest common quotient of 1B

F× and χB.
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More general families. One can look at any ideal in z0 to get more new families of
representations. For example, instead of only looking at characters with values 1 at ζ,
one can look at irreducible factors Q of Zq−1 − 1 that are different from Z − 1, and
consider the ideal (P,Q) for an irreducible polynomial P in B[X±1].

Remark 6.4. Even when B is an integral domain, the previous classes of ideals (P,Q) are
not necessarily prime ideals in z0. The irreducibility has therefore to be considered over
the field extension Frac(B)[Z]/(Q) of Frac(B) i.e. P is irreducible as a polynomial over
this bigger field. Furthermore, letting P be a non-unitary polynomial allows to consider
characters with coefficients in Frac(B) e.g. Zℓ[X±1]/(ℓX − 1) = Qℓ when B = Zℓ.

6.2 Positive level part

Let k ∈ N∗. As a first observation, the level k parts of the representations C∞
c (F,B) and

C∞
c (F×,B) are equal. Therefore the problem reduces to understand the level k part of

the regular representation. The same techniques as in the previous paragraph apply once
the center zk of the category has been made explicit. The study will not be developped
in the present work for the sake of shortness. But in order to flag some differences, here
are some remarks below:

• if B does not have enough p-power roots of unity, the situation is more complicated
as no characters of level k may exist, that is there does not exist a group morphism
χ : 1 +ϖFOF → B× such that 1 +ϖk+1

F OF ⊂ Ker(χ) ⊊ 1 +ϖk
FOF ;

• provided B as enough p-power roots of unity, the set of characters:

CharkB = {χ : 1 +ϖFOF → B× | χ ∈ RepkB(1 +ϖFOF )}

is not empty and decomposes the category RepkB(F×) as product of categories∏
χ∈CharkB

RepχB(F
×), where each category factor is equivalent to Rep0

B(F
×).

In the first situation, the situation may be quite complicacted to write down, though this
first situation only occurs when F has positive characteristic. Indeed, A is isomorphic
to Z[1p , ζp] in this case, whereas it is Z[1p , ζp∞ ] for characteristic zero F . In the event of
B having enough p-power roots of unity, one can reduce the situation to the level 0 part
of C∞

c (F×,B) as it is isomorphic to the χ-part of C∞
c (F×,B) for χ ∈ CharkB. This latter

has been studied in the previous section.

References

[CT13] Gianmarco Chinello and Daniele Turchetti. Weil representation and meta-
plectic groups over an integral domain. Communications in algebra, 43:6:2388–
2419, 2013.

[EH14] Matthew Emerton and David Helm. The local Langlands correspondence for
GLn in families. Ann. Sci. Éc. Norm. Supér., 2014.

37



[GS17] W. T. Gan and B. Sun. The howe duality conjecture: quaternionic case. In
Representation theory, number theory and invariant theory, volume 323, in
honor of R. Howe’s 70th birthday of Progress in Mathematics, pages 175–192.
Weizmann, Cham, 2017.

[GT16] Wee Teck Gan and Shuichiro Takeda. A proof of the howe duality conjecture.
J. of the Amer. Math. Society, 29(3):473–493, 2016.

[Hel16] David Helm. The bernstein centre of the category of smooth W (k)[GLn(F )]-
modules. Forum Math. Sigma, 4, 2016. ARTN e11.

[How79] R. Howe. θ-series and invariant theory. In Automorphic forms, Representations
and L-functions, pages 275–285. American Math. Soc., 1979.

[Kud86] S. S. Kudla. On the local theta correspondence. Invent. Math., 83:229–255,
1986.

[Mín06] Alberto Mínguez. Correspondance de Howe ℓ-modulaire : paires duales de
type II. PhD thesis, Université d’Orsay, 2006.

[Mín08] A. Mínguez. Correspondance de howe explicite : paires duales de type II.
Ann. Sci. Éc. Norm. Supér., 41:717–741, 2008.

[MVW87] Colette Moeglin, Marie-France Vigneras, and Jean-Loup Waldspurger. Cor-
respondance de Howe sur un corps p-adique. Springer, 1987.

[Ral84] S. Rallis. On the Howe duality conjecture. Compositio Mathematica,
51(3):333–3999, 1984.

[Shi12] S. W. Shin. Abelian varieties and the weil representations. Algebra and Num-
ber Theory, 6(8):1719–1772, 2012.

[Tri20] Justin Trias. Correspondance thêta locale ℓ-modulaire I : groupe
métaplectique, représentation de Weil et Θ-lift. 2020. arXiv:2009.11561.

[Vig96] Marie-France Vignéras. Représentations ℓ-modulaires d’un groupe réductif p-
adique avec ℓ ̸= p. Birkhäuser, 1996.

[Vig01] Marie-France Vignéras. Correspondance de Langlands semi-simple pour
GL(n, F ) modulo ℓ ̸= p. Invent. Math., 2001.

[Wal90] J.-L. Waldspurger. Démonstration d’une conjecture de howe ddans le cas
p-adique, p ̸= 2. In Festschrift in honor of I. I. Piatetski-Shapiro on the
occasion of his sixtieth birthday, Part I, Israel Math. Conf. Proc. 2, pages
267–324. Weizmann, Jerusalem, 1990.

[Wei64] A. Weil. Sur certains groupes d’opérateurs unitaires. Acta Math., 111:143–211,
1964.

Departement of Mathematics, Imperial College London, United Kingdom
Email address: jtrias@ic.ac.uk

38


