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Abstract

The classical construction of the Weil representation, with complex coefficients,
has long been expected to work for more general coefficient rings. This paper exhibits
the minimal ring A for which this is possible, the integral closure of Z[%} in a
cyclotomic field, and carries out the construction of the Weil representation over
A-algebras. As a leitmotif all along the work, most of the problems can actually be
solved over the base ring A and transferred to any .A-algebra by scalar extension. The
most striking fact is that all these Weil representations arise as the scalar extension
of a single one with coefficients in A. In this sense, the Weil module obtained is
universal. Building upon this construction, we speculate and make predictions about

an integral theta correspondence.

Introduction

This paper is intended as a stepping-stone in the direction of an “integral theta corres-
pondence”. Whatever this may be, it will require a theory of the Weil representation over
rings and the purpose of this paper is to carry this out on rings with minimal hypotheses.
When the coefficient ring is the field of complex numbers, this representation originated
in problems related to #-series and was first constructed in the seminal paper [Wei64| of
André Weil.

There is another way, as opposed to the original approach of Weil, to build this
representation. Because of its relations with quantum physics, it appears often in older
literature as the so-called oscillator representation and involves the famous Stone-von
Neumann theorem as a cornerstone in this alternative construction [How79|. It plays a
pivotal role in the theta correspondence, where the interplay between this representation
and the dual pairs introduced by Roger Howe [How79| led to a conjectural bijective
correspondence between some subsets of irreducible representations for each member of
the dual pair.

This correspondence, known in older literature as Howe duality or the Howe corres-
pondence, took almost 40 years to be completely proven, and is now usually known as
the theta correspondence. The main works which led to its proof include [How79, Ral84,
Kud86, MVW87, Wal90, Min08, GT16, GS17| and we refer to [Tri20] for a more detailed
exposition of these contributions to the classical theta correspondence. This celebrated
bijection plays a central role in number theory as it encodes a lot of arithmetic inform-
ation and allows one to build automorphic forms. It is the centre of a highly active
research field in the topic.



In the 1980’s, Marie-France Vignéras studied, in relation to Serre’s conjectures, con-
gruences between automorphic representations by means of the modular representation
theory of their local factors. She considered smooth representations of connected re-
ductive p-adic groups with coefficients in fields that are more general than the complex
numbers, allowing in particular fields of positive characteristic. The theory splits into
two different aspects, depending on whether the characteristic of the coefficient is dif-
ferent from p or not. In the first case, which we study here, we talk about ¢-modular
representations by implicitly meaning that ¢ # p. (The second case is referred to as
modulo p representation theory and requires completely different techniques.)

An important result about these f-modular representations is the compatibility of
the classical local Langlands correspondence for general linear groups with a certain /-
modular one as described in [Vig01]|. In recent years, there has been a growing interest
in studying representations in families i.e. over coefficient rings where p is invertible.
For general linear groups, families of representations with coefficients in a Witt ring
W (Fy) are quite well understood [Hel16] and provide a local Langlands correspondence
in families [EH14| compatible with (a modified version due to Breuil-Schneider of) the
classical one and the one constructed by Vignéras.

In terms of the theta correspondence and the Weil representation, a generalisation
to f~-modular representation theory has already been considered in the thesis of Alberto
Minguez [Min06]. Taking an ad-hoc analogue of the Weil representation for type II
dual pairs, he proves that a bijective correspondence holds when the characteristic is big
enough compared to the size of the dual pair at play. In order to develop a modular
theory of the theta correspondence, this analogue is not sufficient and one needs a proper
construction of the Weil representation for coefficient fields, or even coefficient rings.

In [Shil2], Sug Woo Shin achieves this for coefficient rings such that the associated
affine scheme is locally noetherian, by the use of geometric methods such as a Stone-
von Neumann theorem involving abelian schemes. In [CT13], the authors build a Weil
representation with coefficients in integral domains following the original approach of
Weil. The other representation-theoretic strategy, using a non-geometric version of the
Stone-von Neumann theorem, has been carried out in [Tri20]. The latter allows one to
recover most of the classical objects and study them in detail, such as the metaplectic
group, the metaplectic cocycle, and the lifts of dual pairs. Furthermore, this approach
generalises in a nice way in families without the need of particular assumptions on the
coefficient rings, improving the first two mentioned papers whose hypotheses (locally
noetherian affine scheme, or, integral domains) turn out to be more restrictive.

The present paper brings a broader construction of the Weil representation with
coefficients in any A-algebra, where A is a minimal ring specified below. In addition,
exhibiting a minimal Weil representation, called “universal” below, does not appear in
any previous work; nor the focus on extending scalars. The rest of the introduction is
split into two parts: in the first half we give more detail about the results we obtain along
these lines, as well as considerations about the metaplectic group and the metaplectic
cocycle; in the second half, we explain how we expect to use this to study an integral
theta correspondence, with particular focus on the special case of (GLj, GLy).



Let F' be either a local non-archimedean field, or a finite field, of residual characteristic
p and residual cardinality ¢, but of characteristic not 2. The minimal condition mentioned
above amounts to requiring two things: first that a non-trivial smooth additive character
1 of F' exists, allowing Fourier transform techniques; second that p is invertible, that is a
condition in terms of Haar measures. Write K = Q[(,] when F" has positive characteristic,
and K = Q[(p~] when F has characteristic 0. The minimal ring A satisfying the previous
two conditions is the integral closure of Z[%] in C.

Fix from now on a non-trivial smooth character ¢ : I — A*. Notations will be
simplified in the introduction to be lighter than that in the main body of the paper. For
any A-algebra B with structure morphism ¢, the character ¥/8 = ¢ o1 is a non-trivial
character of F' with values in B. More generally, if x is a character of any group with
values in A, we write xZ = ¢ o y.

0.1 Theory of the Weil representation over an A-algebra B

The theory developed in [MVW87, Chap. 2| for complex representations and in [Tri20]
for f-modular representations finds a natural generalisation for an A-algebra B. Note
that there are no restrictive assumptions on the A-algebra considered. In particular, it
is not necessarily an integral domain.

Stone-von Neumann over A-algebras

Let A be a self-dual subgroup in the symplectic space (W, (,)) and 94 a character of the
group Ay = A x I extending 1. Here Ay is considered as a subgoup of the Heisenberg
group H which is the set W x F' endowed with the law:

1
(w,t) - (W', 1) = (w+w’,t+t'+§<w,w/>).

The theorem below gathers together in a succinct way the main results we obtain in
Sections 2.2 & 2.3. It is the core part of the classical Stone-von Neumann theorem
when B = C [MVW87, Chap. 2, Th. 1.2| and its generalisation when B is a field of
characteristic different from p [Tri20, Th. 2.1]. Working over a general ring, the notion
of “irreducible representation” is too restrictive. Instead, when G is a group, we say that
a B[G]-module V is everywhere irreducible if the representation V ®p k(P) is irreducible
for all P € Spec(B), where k(P) is the field of fractions of B/P. This definition is very
convenient to state a Stone-von Neumann theorem over general rings that includes the
situation over coefficient fields.

Theorem A. Set VF = ind} (48) € Repg(H).
a) VB is everywhere irreducible, and is admissible.
b) We have Vi @4 B = V5.
c) For A" any self-dual subgroup in W and ¢4 an extension of 1 to Ay, one has:

Hompy) (VY VE) =~ B.



A consequence of a) and c) is that the isomorphism class of the representation Vf
does not depend on the choices of A and 4. When B is a field, this representation is
also irreducible.

The full Stone-von Neumann Theorem for fields B also asserts that any irreducible
V € Repg(H), such that V|p is YB-isotypic, is in the isomorphism class defined by Vf .
We do not pursue such a precise result over rings. However, for most of the applications
using Stone-von Neumann, and the Weil representation, one usually sticks to the explicit
models given by the representations Vf , where A is a self-dual lattice or a lagrangian,
so our result is sufficient.

Welil representations over A-algebras

Let A be a self-dual subgroup in W. According to Section 3, the action of Sp(W)
on H induces a projective representation of o5 : Sp(W) — PGLg(VE) ie. op is a
group morphism. Denote by RED : GLg(VF) — PGLg(V¥) the quotient morphism.
To lift a projective representation, one uses the fiber product construction to obtain a
representation of some central extension. Looking at the fiber product of oz and RED
above PGLg(V¥), Proposition 3.2 defines:

B

—~B Wi,
Spy,(W) —> GLs(VF) .
PB\L lRED
Sp(W) —*~ PGLg(V})

Definition. The Weil representation associated to ¢ and A with coefficients in B is the

B
representation (Wg,Aa V5B) of the central extension Spy,a(W) of Sp(W) by B*.

Recalling the canonical identification V;(‘ Q4B = Vf from b) of Theorem A above,
our Theorem 3.4 ensures the compatibility:

Theorem B. There exists a canonical morphism of central extensions:
—~ —A B
OB : sz/;,A(W) - Sl%,A(W)

whose image is a central extension of Sp(W) by ¢(A)*. Moreover, there is a commuting
diagram:

—A “’ﬁ,A

Spy,a(W) —— GLA(Va)
s

B wB 4 5

Sp A(W) 4 GLy (VD).

Moreover there exist canonical identifications between these central extensions as A
varies: for any other self-dual subgroup A’, Corollary 3.6 defines a canonical morphism of



central extension such that wfz 4 and wfz 4 agree, where the term “agree” is made precise
in the corollary mentioned. So the Weil representation wfz associated to v is well-defined
in the sense that the isomorphism class of wfz 4 does not depend on A.

The metaplectic group over A-algebras

The isomorphism class of é}v)i 4(W), as a central extension of Sp(WW) by B*, does not
depend on the choice of A or ¥ 4. In addition, the canonical isomorphism of central exten-
sions induced by Vf ~ Vf, is compatible with the fiber product projections. Therefore
one can speak of the metaplectic group over B associated to v as any element in the previ-
ous isomorphism class. Even if these groups may be isomorphic for different v, there does
not necessarily exist an isomorphism compatible with the fiber product construction: in
this sense these groups do depend on .

We endow the module V§ with the discrete topology and the group GLg(V%) with
the compact-open one. Then Corollary 4.2 compares the situation over A with that for
the classical metaplectic group. Indeed if we endow C with a structure of A-algebra,
then:

—~A —~C
Proposition. The group Sp,, (W) is an open topological subgroup of Spy, 4(W).

—~C
Here the natural topology on Spy, 4(W) is that as a subgroup of Sp(W) x GLc(VY).
The classical metaplectic group is known to be locally profinite, and so is the metpalectic
group over A because of the proposition. Define now the derived group:

Sy 4 (W) = [Spo A (W), Spy. 4 (W)].

When B = C, this derived group is the reduced metaplectic group when F is local
non-achimedean, or the symplectic group when F' is finite, except in the exceptional
case F' = F3 and dimp(W) = 2. Acccording to Proposition 4.3, one has a canonical
isomorphism of central extensions:

—~A —~C
SPy,a(W) = Spy, 4(W).
Proposition 4.4 sheds light on the structure of the metaplectic group:

Theorem C. One has the following properties:

—~B
a) the group Spy,a(W) is the fiber product in the category of topological groups of the
morphisms o and RED, having the subspace topology in Sp(W) x GLg(V5¥);

—~B
b) the representation wsz : Spy a(W) — GLg(VE) is smooth;
—~ —~B
c) the map ¢ of Theorem B is open and continuous, and Sp%A(W) is locally profinite;

d) considering derived groups, the map 51; restricts to:



—~A B
i) a surjection Spy, (W) — Spy, (W) with kernel {£1} and image isomorphic
to Sp(W) if F is local non-archimedean and char(B) = 2;

A B
i) an isomorphism Spy, 4(W) =~ Sp,;, 4(W) otherwise.

Again exclude the exceptional case, which is considered in the separate Remark 4.12.
In Section 4.2, we prove:

B
Theorem D. There exists a section ¢ : Sp(W) — Spy, a(W) compatible with that
defined over A and such that the associated 2-cocyle ¢g has image:

e {1} if F is finite or char(B) = 2;

o {£1} if F is local non-archimedean and char(B) # 2.

Families of Weil representations

The consequence of these results is that one may speak of a universal Weil module w;;‘
over A associated to 1: that is (see Proposition 5.4) any Weil representation w? with
coefficients in B arises from the scalar extension of this universal Weil module. Thus,
according to the compatibility in Theorem B, the Weil representation w;;‘ is a family of
Weil representations over the residue fields of Spec(.A).

0.2 Towards an integral theta correspondence

In the rest of the introduction, we give some new ideas and speculate in the direction of
an integral theta correspondence. As an illustration, we study in detail the case of the
type II dual pair (F*, F*) but it is only this example which is part of the main body of
the paper. Thus the text below is a kind of story about the bigger picture to motivate
our study and can be omitted if the reader is only interested in the Weil representation
itself.

Suppose again F' is local non-archimedean. For more general dual pairs (Hy, H2),
one usually considers the Weil representation with coefficients in a field, along with its
biggest mi-isotypic quotients for 1 running through the irreducible representations of Hj.
However, there is no natural definition of what a good biggest isotypic quotient over a
ring should be. But there is another approach with a coarser invariant in terms of the
Bernstein centre, giving a bigger representation. In order to lighten notations further,
we omit the reference to ¢ from now on.

Replacing biggest isotypic quotients: a heuristic approach

Suppose in this paragraph that B is an algebraically closed field. Let 35(Hi) be the
Bernstein centre of Hy. A character of the Bernstein of the centre is a B-algebra morph-
ism 1y : 38(H1) — B. The set of such characters correspond bijectively to the points
in Specmax(35(H1)). Denote by 1, : 38(H1) — B the character associated to 1. The
construction of the biggest m;-isotypic quotient factors through the biggest 7., -isotypic



quotient, in the sense that for any V' € Repg(H1), the quotient V' — V;, factors through
V' =V ®;,(#,) - Denote by V;, - the latter representation. Regardless of the charac-
teristic of B, and similarly to Vi, € Repg(H; x Hy) when V' € Repg(H; x Hs), one has
V’?‘frl S RepB(Hl X HQ)

When the characteristic £ of B is banal with respect to Hy, that is when ¢ does not
divide the pro-order |Hp| of Hj, the set of characters of 35(H7) is in bijection with the
set of cuspidal supports in Repg(H;) and we expect the following to hold for all n; in a
Zariski open subset of Specmax(35(H;)):

Vo, ~ B Va,

T1EN

where 71 € 71 means 7, = 11, that is m; has cuspidal support corresponding to 7;.

Outside the banal setting, it seems risky to state any precise results. Already some
key facts fail: the maximal ideals of 35(H;) are no longer in bijection with cuspidal
supports. However the biggest mi-isotypic quotient V;, always is a quotient of the bigger
representation V;,, so this last construction encapsulates more information. In addition,
we expect this object to behave in a nicer way for coefficient rings as it keeps track of
congruences.

INlustration for the type II dual pair (F'*, F*)

The category Repg(F*) can be decomposed according to the level and we denote by
RepOB(F *) the level 0 direct factor category. This category is Morita-equivalent to the
category of 3’-modules, where 3° is the commutative ring B[F*/1 + wrOp]. Up to
choosing a uniformiser wr and a primitive (¢ — 1)-th root of unity ¢ in F'*, this ring is
isomorphic to B[X*1, Z]/(Z%' — 1) by sending X to wr and Z to (. Instead of consid-
ering biggest isotypic quotients associated to irreducible representations in Repg(F™),
Section 6.1.1 considers more general isotypic families of representations using the explicit
description of (the center of) 3.

Definition. Let V € Repg(F*). When C is a commutative B-algebra and 7 : 3° — C is
a B-algebra morphism, the repesentation V;, =V ®,0 n € Rep¢(F*) may be thought as
the “biggest n-isotypic quotient of V.”

Remark. Unlike the situation of the biggest isotypic quotient, V' does not necessarily
surject onto V,, if n is not surjective. So in general V,, is not a quotient of V', but the
image of V' in V,, generates V,, as a C-module.

When B’ is a B-algebra, denote by (lgx,B') € Rep%(F*) the trivial 3°-module iso-

morphic to B’. Denote by (xg, B) the character with xz(wr) = ¢ € B* and XB|(9§ = 13.
Thus xp is the inverse of the norm |- |p.

Let I; be the ideal in 3° corresponding to (X — 1,7 — 1) in B[X*!, Z]/(Z971 —1).
Denote the quotient map n; : 30 — 3°/I;. Consider the isotypic family Vi associated to
1 with respect to the action of the first copy of F* on V. Take the same convention for
I corresponding to (X — ¢, Z — 1) with n being the quotient map.



Theorem E. One has in Repg(F™) the following isomorphisms:

B/(¢—1)B

B
Fx o1

a) ‘/;71 ~1 Fx7

b) V;, ~ li/x(q—l)[)’ D XB-

The subrepresentation 1?/;(171)8 is in a certain sense the “defect” in the theta cor-

respondence. This is a pure (¢ — 1)-torsion submodule, whereas the other part is a free
B-module of rank 1. When B is a field, this defect vanishes if and only if the characteristic
¢ of B does not divide ¢ — 1, that is £ is banal with respect to F'*.

Further example

Using this interpretation in terms of the characters of the Bernstein centre seems to be
more suitable when B is a ring. Indeed recall the situation in [Tri20, Sec. 5.3 where
F has odd residual characteristic and (Hy, Hs) is a type I dual pair that is split in the
metaplectic group. Let £ be a prime that does not divide the pro-order of H; and endow
B = W(F,) with an A-algebra stucture. Let K be the fraction field of B. For any
absolutely irreducible cuspidal II; € Repg(H1), one has the equality Vi, = Vnn1 for
V € Repg (Hy).

The reduction modulo ¢ of II; is obtained by choosing a sable lattice Ly, in II;. The
reduction modulo ¢ of this lattice is an irreducible representation m; whose isomorphism
class does not depend on the choice of Lyj,. We refer to [Tri20, Sec. 5.3| for more details,
but what is important here is that similarly to IIy, we have Vr, =V, for V' € Repg,(H1).
Actually this comes along with some compatibilities to scalar extension. Indeed there
exists a character n1 : 3y, (H1) — W (Fy) of the integral Bernstein centre such that

m Qw () Fy = g, and my Ow (Fp) K = n1,. This yields, for any V' € RepW(E) (Hy x Hj),
the following canonical morphisms in Repw(ﬂ)(H 1 X Ho):

Vi Vi @y K = (V ®wayy K, -

|

Vin Ow ) Fp=(V Ow (77) Fo)n,

When V = w is the Weil representation with coefficients in W (F;), the Weil representa-
tions with coefficients in the residue fields F, and K of W (F,) are @ = w Ow (Fy) F, and
Q= w®W(F7)K respectively. The biggest isotypic quotients are th ~ I, ® x ©(I1;) and
Wy, = T @, O(m1), where O(I1) € Repg (Hz2) and ©(m1) € Repg, (Hz). So wy, is a good
family object because its generic fiber is Il @ x O (Il ) and its special fiber is 71 @z, O (m1).
In addition ©(ILy) is irreducible, when it is non-zero and wy, is a W (F¢)[H; x Ha)-lattice
in ITy ® x ©(I11 ). Furthermore, when ¢ is banal with respect to Hy and O(I1;) is cuspidal,
the representation © () is the reduction modulo ¢ of ©(Il;) and is therefore irreducible
[Tri20, Th. 5.17]. To relate ©(II;) and ©(7m) in general, one needs to explicitly know
which lattice in IT; ® g O(II1) is wy, .



First expectations

Of course in the most general situation, i.e. when the coefficient ring B is Z[%] (or A),
exhibiting blocks, as well as their centres, is a daydream. However, one can play with:

e “simpler” rings B (fields, local rings, banal characteristic, etc.);
e special classes of representations (cuspidals, level 0, etc.);
e casier groups in the dual pair (small dimension, general linear, etc.).

As recalled, this has been achieved in [Tri20, Sec. 5.3| for type I dual pairs (Hy, Ha) over
the local ring W (F;) when £ is banal with respect to Hy, looking at the block defined by a
(super)cuspidal representation. In Section 6, we consider the (very simple) pair (F*, F*),
especially for level 0 representations. For bigger type II dual pairs (GL,,(F'), GLy,(F))
and coefficients rings being made of Witt vectors, the work |[Hell6] seems to be the
cornerstone to tackle the problem. Based on calculations in small dimensions, we make
the following two conjectures.

Torsion principle. When the pro-order of Hy, or that of Hs, is not invertible in B,
we expect the failure of the theta correspondence to appear as some |Hy|s|Hs|¢-torsion
submodule in the family object, where |H;|; denotes the prime-to-p part of the pro-
order of H;. Thanks to Theorem E, this principle is made a bit more precise when
(Hy,Hy) = (F*,F*).

Bijection principle for characters of the Bernstein centre. Another problem is
the following. When 7 : 35(H1) — B is a character, are there any nice properties of
(wP)y,, where w® is the Weil representation over B? For instance, it seems that the
action of 35(H2) can also be described in terms of a character of 35(H2). Indeed one
expects that there exists a character o : 35(H2) — B such that ((wP)y,)n, = (W5)y,.
Denoting by 11 ®p 12 the natural character j3p(H1) ®p jr(H2) — B, we expect even
more: (wB),, = (WP, = (WP)yepm. Writing 72 = 6(n;1), one could then speak of a
theta correspondence in terms of characters of the respective Bernstein centres because
# would induce a bijection:

{m: 38(H1) = B | (W5)y, # 0} 2 {0 : 38(Ha) — B | (WB),, # 0}.

Acknowledgements: [ would like to thank Shaun Stevens for his useful comments, as
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1 Preliminaries

1.1 Notations

All along the paper F' will be a field of characteristic not 2, which is either finite or
local non archimedean. The residual characteristic and cardinality of F' are denoted as
usual p and ¢. To turn F' into a topological field one considers the usual locally profinite
topology. One of the many equivalent formulations of the latter is “locally compact and
totally disconnected”.

K and A. Let K be the field defined in the following two cases:

e KC is the cyclotomic extension of Q containing the p'* roots of unity, when the
characateristic of F' is positive;

e /C is the algebraic extension of Q containing all the p power roots of unity, when
the characteristic of F' is zero.

One can write L = Q((,) by fixing a generator ¢, in the first case; in the second however,
no generator exists, though the notation K = Q((p~) is commonly used. Based on
classical results for cyclotomic extensions, the integral closure Ok of Z in K is, in the
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first case Z[(p], and in the second Z[(y~]. From now on, let A be the subring of K
obtained from the ring of integers Ok by inverting p, that is:

ol

A-algebras. By convention, the term A-algebra will refer to commutative rings B
endowed with an A-algebra structure, that is, a ring morphism ¢ : A — B. In order
to avoid confusion, those B considered always are unitary rings and ¢ maps the neutral
multiplicative element of A to that of B. Denote char(B) the characteristic of B, that
is the natural number such that {k € Z | ¢(k) = 0} = char(B)Z. The ring morphism
¢ induces a group morphism A% — B* between the group of units of A and that of B.
Denote puP(B) = {¢ € B* | 3k € Z, ot = 1} for the group of elements in B* having order
a power of p.

Character ¥5. Let B be an A-algebra. Then ¢ restricts injectively to the group of
roots in A* having order a power of p, that is the group morphism ¢ : p?(A) — pP(B)
is injective. Indeed, given two distinct roots of unity ¢ and ¢’ in pP(A), their difference
¢—("is in A* because p € A*, so they define two distinct elements in ¢(A) = A/Ker(y).
Therefore one can build, out of any non-trivial smooth character ¢ : F' — A*, a character
po1: F — B* which is still non-trivial and smooth. In order to keep track of the ring
considered, one uses a superscript to refer to the A-algbera at stake. From now on, fix
such a non-trivial smooth ¥4 : F — A* and set:

B = p oA

Smooth representations. Let G be a locally profinite group. Let R be a commutative
unitary ring. An R[G]-module V is said to be smooth if for all v € V| the stabiliser G,
of v is open in G. One denotes Repy(G) the category of smooth R[G]-modules. For any
closed subgroup H in G, the induction functor Ind% associates to any (o, W) € Repp(H),
the representation Ind% (W) € Repy(G) of locally constant functions on G taking values
in W and satisfying f(hg) = o(h)- f(g) for all g € G and h € H. The compact induction
indg is the subfunctor of Indg made of functions compactly supported modulo H, that
is the subspace of functions f € Ind% (W) such that the image of supp(f) in H\G is a
compact set. A representation V' € Repp(G) is said to be admissible if for all compact
open subgroups K in G, the set of K-invariants VX = {v € V | g-v = v} is finitely
generated as an R-module.

Haar measures. Let G be a locally profinite group. In the following, we use the
notations of [Vig96, I.1 & 1.2]. The pro-order |G| of G is the least common multiple, in the
sense of supernatural integers, of the orders of its open compact subgroups. To be more
explicit, |G| is a function P — NUoo on the set of prime numbers P. This decomposes in
an obvious way into two parts having disjoint supports, namely the finite part |G|; and
the infinite one |G|o. The only situation occuring in the present work is |G| = |G| x |G|
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with |G| € {1,p™}, according to G being either a finite group or an infinite p-adic
group; in the latter case, |G|s is prime-to-p. Let R be a commutative unitary ring. As
long as all the primes in |G| are invertible in R, there exists a Haar measure on G
with values in R, that is a non-zero left G-equivariant morphism C2°(G, R) — 12 where
C°(G, R) is the space of locally constant and compactly supported functions in G with
values in R, and (1Z, R) is the trivial representation. A normalised Haar measure on G
is a Haar measure taking the value 1 on a compact open subgroup of G. In particular
such a compact open subgroup must be of invertible pro-order in R. Reciprocally, any
normalised Haar measure arises as a Haar measure having value 1 on a compact open
subgroup of invertible pro-order in R.

The space W. Let (W, {(,)) be a symplectic vector space of finite dimension over F. Its
isometry group is composed of the F-linear invertible endomorphisms preserving the form
(,) and is classically denoted Sp(W). A lagrangian in W is a maximal totally isotropic
subspace. Denote the dimension of W by n = 2m, then X is a lagrangian if and only if it
is a vector subspace which is totally isotropic (i.e. Va,2’ € X, (x,2’) = 0) of dimension
m. A lattice L in W is a free Op-module of rank n. The locally profinite topology on
the field F' induces a locally profinite topology on the finite dimensional vector space W.
As a result, a lattice in W is a compact open set. Furthermore the subspace topology
induced from that of Endp(W) on the symplectic group Sp(W) is the locally profinite
one as well.

2 Metaplectic representations over A-algebras

The Heisenberg group H is the set W x F' endowed with the product topology and the
composition law:

1
(w,t) - (W', ) = (w+w' t+t + §(w,w’>)
for (w,t) and (w',t') in H =W x F.
Let B be an A-algebra with structure morphism ¢. Let ¢4 : F — A* be a non-trivial

smooth character. As already mentioned in Section 1.1, this defines, by composing 1
and ¢, a character ¥8 : ' — B* which is smooth and non-trivial.

2.1 A lemma for representations over rings

Let G be a group and R a commutative ring. For every prime ideal P in Spec(R), one
denotes k(P) the fraction field of R(P) = R/P. Both k(P) and R(P) are endowed
with an obvious structure of R-algebras. For any R[G]-module V', the tensor product
V @z k(P) is a k(P)[G]-module in the obvious way. Of course, the latter is smooth if
the former is.

Definition 2.1. An R[G]-module V is said to be irreducible at P € Spec(R) if the
representation V' @ k(P) € Repy(p)(G) is irreducible. By extension, V' is everywhere
irreducible if it is irreducible at any point of Spec(R).

12



There exists a simple sufficient condition to be everywhere irreducible:

Lemma 2.2. Let V' be an R[G]-module and consider the map I — IV that maps an
ideal I of R to the sub-R[G]-module IV of V. If the previous map defines a bijection
between ideals of R and sub-R|G]-modules of V, then V is everywhere irreducible.

Proof. Using the bijection, one has PV C V for any prime (proper) ideal P, so the module
V ®r R(P) = V/PV is non-zero. It is even R(P)-torsion free because, if av € PV for
a € Rand v € V, then al, C P where I,V = R[G] - v. In particular V ®% R(P) embeds
in V ®@g k(P) by a localisation argument, so the latter representation is non-zero.

In order to prove that V ®@x k(P) is irreducible, let W be a non-zero subrepresentation
of V®r k(P) and define W = {v € V | v®@gr 1 € W}. As a first elementary claim,
this W’ is a non-zero sub-R[G]-module of V. In addition the bijection hypothesis yields
the existence of an ideal I of R such that W’ = I'V. Observe furthermore thanks to the
bijection that I C P if and only if IV C PV. As a consequence, the image of IV in
V @r k(P) generates V ®x k(P) as a k(P)-vector space if and only if I is not contained
in P. Of course the image of W/ in V ®x k(P) is non-zero because W is not, so I is not
contained in P i.e. the image of W’ generates V @z k(P). Therefore W = Vg k(P). O

2.2 Models V¥ associated to self-dual subgroups
When A is a closed subgroup of W, define:

At ={we W | p*((w, A)) = 1}.

In this definition, whether one uses ¥ or 18 matters not. Now, the closed subgroup
A of W is said to be self-dual if A+ = A. Lagrangians and self-dual lattices provide
examples of such subgroups, so there always exist self-dual subgroups in W.

Lemma 2.3. Let A be a self-dual subgroup of W. Then there exists a character wﬁ
which extends ™ to the subgroup Ag = A x F of the Heisenberg group H. Furthermore,
1/;531 =po wﬁ provides the same kind of extension, that is, T/fg extends B to Ap.

This lemma can be proved in the exact same elementary way as [Tri20, Lem. 2.2 a).
For the sake of shortness, we simply refer to the latter. The heart of the current section
is the following proposition, generalising [Tri20, Lem. 2.2 b)| where the .A-algebra B is a
field:

Proposition 2.4. Let 4 be as above and set V5 = indﬁfH (¥8) € Repy(H).

a) The map I — IVE defines a bijection from the set of ideals of B to the set of
sub-B[H]-modules of Vf . In particular, Vf 1s everywhere irreducible;

b) The B[H]-module V¥ is admissible and VE = IndgH (¥B);

c¢) VB satisfies Schur’s lemma, that is EndB[H}(Vf) = B.
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Proof. The core idea of the proof comes from [Tri20, Lem. 2.2 b) & Prop 2.4 ¢)|, which
was originally generalising [MVW87, Chap. 2, 1.3 & 1.6]. As some differences occur when
dealing with A-algebras instead of fields, we carefully examine and detail them below.
a) First remark that, assuming the bijection property holds, the second part of the
statement is a mere application of Lemma 2.2. Therefore we focus our attention to
proving that such a bijection holds.

The B[H]-module V¥ is generated as a B-module by a family (., 1.) we now describe.
As wg is smooth, there exists for all w € W an open compact subgroup L,, of W such
that ¥5(a) = 1 for all a € Ay N (w,0)(Ly, 0)(w,0). Fix such choices of small enough
lattices (Ly)wew. Then if L is a sublattice of L,,, there exists a unique function in
V% which is supported on Ay (w,0)(L,0), right invariant under (L,0) and taking the
value 1 at (w,0). One denotes it Xy, . The B[H]-module V¥ being smooth, any f in this
compactly induced module can be written as a finite sum of such x,,, 1, that is the family
(Xw,L)wew,LCL,, 1S generating Vf . Actually we can give a more precise decomposition in
terms of these functions. We claim that f can be written as a finte sum ) | f((w,0)) Xw,L
where L only depends on f and the functions x,, , have disjoint supports. Indeed, assume
that f is right invariant by (L, 0) and f((w,0)) # 0. In order for x,, 1, to be well-defined,
the condition ¥4 (a) = 1 for all a € Ay N (w,0)(L,0)(w,0)~! needs to be satisfied. Note
that (w,0)(L,0)(w,0)™t = {(I,{w,l)) | I € L} so the intersection with Ay is simply
{(l,{w,l)) | l € An L}. By right invariance, we obtain for all [ € A N L the equality
F((w,0)) = F((,0)(1,0)) = Y&((L, {w, 1)) f((w,0)). This implies that y&({L, (w,1)) = 1
for all [l € AN L because 1 — ( is a regular element in B when ¢ € pP(B) and ¢ # 1.
Therfore f = f(w,0) - xw,z, where the sum runs over a finite number of double cosets
Ap(w,0)(L,0) in H. Because the subspace of functions in V¥ taking values in I and the
space [ Vf both contain (i - Xw,1)ier,wew,LcL, as a generating family, they must agree.
Consequently the injectivity of the map I — [ Vf follows.

The surjectivity of I + IV amounts to proving that any sub-B[H]-module of V{
is of the form IVE. For any subset X of V¥, define Ix =< f(h) | h € H,f € X > the
ideal in B generated by the set of values of functions in X. There is an obvious inclusion
of B[H]-modules B[H]- X C IxV%. We claim even more: this inclusion actually is an
equality. It is enough to prove it when X is a singleton to deduce the result general case
because B[H]- X = 3" B[H]- f and IxV} =" I;V5 where the sums run over all f € X.
So from now on, suppose that X is made of a single function f in Vf . We would like to
prove that the reverse inclusion holds, that is:

1;VE c B[H] - f.

As p is invertible in B, there exists a Haar measure of H which takes values in B and
is normalised over a compact open subgroup of H. Let p be such a measure. The claim
will then follow from the — technical-to-state but rather clear — observation below:

Lemma 2.5. Let f be a non-zero function of Vf. For any w € W, fix a sufficiently
small lattice Ly, in W such that (L, 0) leaves f right invariant and ¥5(a) = 1 for all
a € Ag N (w,0)(Ly,0)(w,0)~L. Then for any sublattice L of L, there exists an element

bw,r € BIH] such that ¢u,1 - f = f((w,0))Xuw,L-

14



Proof. First of all, the fact that such a choice of lattices (L )wew exists comes for the
smoothness of Vf and 1&5{. Let L be sublattice of L,, and define:

Yi((=a,0))

vl AV (e ) 1zina(@) € B

p:ra€ A~
where 1x is the characteristic funtion of X, u 4 is a Haar measure of A normalised over a
compact open subgroup and vol(L* N A) is a power of p. Then an explicit computation
will show that the function:

¢o-f:he H— /Ad)(a)f(h(a,()))duA(a) eB

belongs to B[H] - f and is a scalar multiple of X,

We give short but prompt explanation of this last computational claim. Given that
the function ¢ is compactly supported and locally constant, one can write — up to some
volume factor which is a mere power of p — the function ¢ - f as a finite sum:

>~ (@) (h(ai, 0) = (3 olai) (@i, 0)) - £(h).
So ¢ - f belongs to B[H] - f. For all w’ € W, the compution mentioned above reads:

6 1. 0) = F((0) % e [ v~ wadpate).

A classical argument rewrites the last term as 144,41 (w’). Therefore ¢ - f has support
Apg(w,0)(L,0), is right invariant under (L, 0) and takes the value f((w,0)) at (w,0). By
unicity, one must have ¢- f = f((w,0)) - Xw,.- Now ¢y, 1, exists because ¢-f € B[H]-f. [

Applying the previous lemma, we conclude that the reverse inclusion I Vf C B[H]-f
holds. So the map I +— [ Vf is injective and surjective, that is being bijective.
b) Let L be an open compact subgroup of W. Let w € W. Consider the set of func-
tions left 1)5-equivariant, supported on the double coset Ag(w,0)(L,0) and right in-
variant under (L,0). Actually this space of functions is isomorphic to either B or 0
as a consequence of the formula for invariants vectors in compactly induced represent-
ations [Vig96, 1.5.6]. Denote by x., 1 the appropriate generator, meaning the function
that takes value either 1 or 0 at (w,0). Fix representantives in W for the double coset
Apy\H/(L,0) ~ AA\W/L = W/(A+ L). Remark that the admissibility of V{ follows
from the fact that, given some L, there are only finitely many representantives w giving
rise to non-zero functions x,,, . We are now proving this claim about functions ., r..

Suppose X, is non-zero. For all [ € L N A, one has:

1= Xw,L((w7 0)) = Xw,L<(w7O)(l7 0)) = Xw,L((L <w7 l>)(w70)) = ¢8(<w7 l>)w.§l((l7 0))

Thus for all [ € LN A, the relation ¢5((w,1)) = ¥5((~1,0)) must hold. It means that
any two representantives w and w’, giving rise to non zero x,, 1, and Xw',1, Must satisfy
the relation ¢8((w —w',1)) =1 foralll € LN A i.e. w —w' € (LN A)*. However:

(LNnA*r =Lt + At =1+ + A
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As L is compact open, its orthogonal LT is compact open too because this holds for
lattices in . So the image of L' in the quotient W/(A+ L) is a finite set, which means
the set of representatives w giving rise to non-zero x,,r, when L is fixed, is finite.

To conclude, for any sufficiently small open compact subgroup L of W, the condition
for smallness being L x Ker(1/?) is a subgroup of H, one has:

(VKW = B By
Xw,L?éO

where the right-hand side sum is finite. So the smooth B[H]-module V¥ is admissible,
and according to [Vig96, 1.5.6 1)], it is equivalent to saying that indf . (wﬁ) = Indf . (wﬁ).
c) As proved in the previous point, there exists a sufficiently small open compact sub-
group L of W such that K = L x Ker(1/?) is a subgroup of H and:

(VE)K = @ B Xuw,L
Xw,L?éO

where the right-hand side sum is finite. In addition, there exists a non-zero x,,r for
w € W if the condition “¢)5(a) = 1 for all a € Ay N (w,0)(L,0)(w,0)~" is satisfied.
Therefore, up to strengthening the sufficiently small condition, one may suppose that
(VBYE #£ 0. Because every B - X, 1, is isomorphic to B, and the sum runs over functions
with mutually disjoint supports, the B-module (Vﬁg )& is a free module of finite rank.

Thanks to point a), the B[H]-module V¥ is generated by a single element Y., ..
Indeed, the ideal I, , =< xw,r(h) | h € H > satisfies B[H] - xw, = Iy, ,V} and
contains 1 since yu.1((w,0)) = 1. Thus the restriction to (VF)X induces an injective
morphism of B-algebras:

£: EndB[H](VE) — EndHB(H,K)((VE)K)’

where (VF)X is a module on the relative Hecke algebra Hp(H, K) [Vig96, 1.4.5].

The module (V)X being free over B, write its basis B = (Xuw.1)w. In this basis, the
function ¢,, 1, defined above in the proof of Lemma 2.5 becomes the elementary projector
Ey, onto xy 1 i.e. for all w’ € B one has:

0 if w' # w;

Gu,L * Xuw',L = Xuw',L((0,0)) X Xw,L = { Xuw,L otherwise.

Let now ® € Endgs)(VF). Then the image £(®) of ® in Endyy, s 1) (VF)™) com-
mutes with E,, for all w € B as it commutes with the action of ¢, ;. Because of this
commutation relation between &(®) and F,, there exists a scalar \,, € B such that
E(P)(Xw.L.) = Aw X Xw,L- As any xu,1 generates Vf as a B[H]-module, it does generate
(VEYE as a Hp(H, K)-module. This last fact implies that all the \,, are equal. Therefore
there exists A € B such that £(®) = )‘Id(Vf)K- So & = )‘idvj” because ¢ is injective. [

The following can be easily deduced from Proposition 2.4 that has just been proved
and the finiteness property of the compact induction:
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Corollary 2.6. Let B’ be a B-algebra given by the ring morphism ¢’ : B — B'. Then the
morphism ¢’ induces a canonical isomorphism of smooth B'[H]|-modules:

VBogB ~VE.
It is given on simple tensor elements by the map f @p b +— b x (¢’ o f).

This result will allow to reduce any problem over an A-algebra to a problem over A,
because applying the corollary leads to the canonical identification:

VE~VioaB.

Furthermore, one can consider A-algebras that are not integral domains. For instance,
if B =], B; is a finite product of A-algebras (B;), then:

Vf ~ @Vf’

2.3 Changing models from VAB1 to V}g

Let A1 and As be two self-dual subgroups of W. Let ¢£1 be a character that extends
B to A1,g as in Lemma 2.3. Similarly, fix an extension wﬁZ of 1B with respect to Ao pr.
Once again, set qbfh = gpoy)ﬁl and 1/}22 = goo¢£2, which are both smooth and non-trivial
characters. Suppose w € W satisfies the condition:

A ((a, 0095, ((a,0)) " = ¢P((a,w)) for all @ € A1 N As.

Note that such an w always exist as the left-hand side defines a character of A; N As.
Let 1 be a Haar measure with values in B of the quotient A1 N Ag\ Ay. Define:

I, =< pu(K) | K open compact subgroup >

the ideal of B generated by the various values taken by p on the open compact subgroups
of Ay N A\ As. By unicity of the Haar measure, the ideal I, is prinicpal and generated
by any u(K) as long as the pro-order of K is invertible in B. The measure is said to
be invertible if I, = B. Of course, every normalised Haar measure, that is a measure
taking the value 1 on a compact open subgroup, is invertible. For u to be invertible, it
is necessary and sufficient that there exists a compact open subgroup whose measure is
a unit in B i.e. p is a unit multiple of a normalised Haar measure.

Proposition 2.7. The map I, a, .0 associating to f € Vfl the function:
Lay g 2 h— Ui, (@) f((w, 0)ah) dp(a)
Ay pNAg g\A2 f

is a morphism of smooth B[H]-modules from Vfl to VABQ. Its 1mage s IMV:f2 and, as a
result, 1A, A, uw 15 an isomorphism if and only if pu is an invertible measure. In addition,
any invertible measure p induces an isomorphism of B-modules:

Hompy)(VE,, VE,) = {Ma, A | A € B} ~ B.
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Proof. On the one hand, the function 14, 4, .. f is well defined. Indeed for any h € H,
the function a € Ay g — @DEQ (@) f((w,0)ah) € B is (A1, N Ag g)-left invariant and
locally constant, so one can consider it is a function on Ay g N As g\As g = A1 N A\ As.
The function @ € Az g — f((w,0)ah) € B is compactly supported modulo A; g N Az g
because, as in [Tri20, Sec. 2.3|, the sum A; + As is a closed subgroup of H. Finally, a
change of variables implies that 14, 4, . f is left wEQ—equivariant. The map Ia; Ay pw
is clearly B-linear and H-equivariant so that I, 4, . € Hompg H](Vfl, Vfé ).

As a result of point a) from Proposition 2.4, the image of 4, 4, .. must be of the
form [ VfQ for some ideal I in B. Actually, we proved a sharper results in the proof of
point a) showing that:

I= {IAl,Az,,LL,wf(h) | fe V/ﬁa h € H}

If 11 is chosen to be invertible, then for any other measure i/, there exists A € B generating
I, and such that the image of o, 4, ./ is Iy 1 VfQ =\ V}é. It reduces to consider the
morphism 4, 4, .. When p is invertible. In this case, we show below that the morphism
is surjective and as injective.

Suppose p is invertible. As in the proof of Proposition 2.4, choose a sufficiently small
open compact subgroup L of W such that there exists a non-zero function x.,, 7, supported
on Ay g(w,0)(L,0), right invariant under (L,0) and taking the value 1 at (w,0). One
may as well suppose that 94,((l,0)) = 1 for all [ € L, by choosing an even smaller L if
needed. Then the formula for .,z at h = (0,0) reads:

IAl,Az,,u,wa,L((Oa 0)) = ¢A2 ((lv 0))71XW,L((W7 0)(l7 0)) du(l)

/LﬁAl ﬂAQ\LﬂAz

/ Yoo (@, 0)) da()
LNA; ﬂAQ\LﬂAz

= VOI(L NA;N AQ\L N AQ)

The group LN A3 N A\ LN Ag has pro-order a power of p, so its volume for the invertible
measure g is a unit i.e. 4, 4, 5.0Xw,0((0,0)) € B*.

Therefore the previous unit 14, 4, uwXw,z((0,0)) belongs to I i.e. I =B =1, It
follows that the morphism I'4, A, .. is surjective. It is injective as well. Indeed, its kernel
is of the form I’Vf1 for some ideal I’ of B, and for all ¢ € I’, the function ¢'x,, 1, belongs
to the kernel. However the function IAl,AQ,/L,w(i,XW,L) = i/IAl,Az,u,wa,L takes the value
i’ at (0,0) and is the zero function. So ' = 0 and I’ is the zero ideal of B. O

Consider the scalar extension functor:
V e€Repy(H) =V ®a B e Repg(H)

and denote ¢z : HomA[H](VA“l, VA‘;) — HomB[H}(Vfl,VfQ) the map that is induced by
functoriality.
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In particular for all f € Hom 4 (V;ﬁ, ijé ), the following diagram, where the vertical
arrows are given by the canonical Vf — VA“ ®4 B of Corollary 2.6, is commutative:

f
Vi ——Vvi.

|

o5(f)
Vi —=V}

For w € W, observe now that the two following conditions are equivalent:
. wﬁl((a,O))wi((a,O))*l = pA({a,w)) for all a € Ay N Ag;
o wgl((a,()))wi((a,O))*l = ¢B((a,w)) for all a € Ay N As.
Fix w € W satisfying one of the previous two. The corollary below is quite immediate:

Corollary 2.8. Let ,uA be an invertible Haar measure of Ay N Ax\Ag with values in A.
Set uB = @ o pA. This latter measure is an invertible B-valued measure. Then for all
M e HomB[H](Vfl, sz), there ewists A € B such that:

M = X\x IAl,Asz,w =AX ¢B(IA1,A27MA,W)‘

3 Weil representations over A-algebras

Let B be an A-algebra. Let A a self-dual subgroup of W and V¥ = indff (¥%) the

H
smooth B[H]-module built in Section 2.2, where ¢,§1 is an extension of ¥? in the way

of Lemma 2.3. The symplectic group Sp(W) is naturally acting on H through the first
coordinate, that is:

g (w,t) = (g, 1)

for g € Sp(W) and (w,t) € H. Of course, self-dual subgroups are preserved under this
action, that is gA is self-dual for all g € Sp(W).
In this section g always denotes an element of Sp(W). For f € V%, the function:

Lf :heHw— f(go'-h)eB

belongs to Vga = indgA)H(wgBA) where ng(gﬂ) =B (a) for alla € Ay. It is important
to stress that Vgl; depends on g, because even if gA = A, one may have that @Z)fA # 8
as characters of Ar. Another caution is related to the map:

I, feVEw IfeVh
that is not a morphism of B[H]-modules. Indeed, for hy € H, one has:

Iy(ho - f) = (g~ ho) - Iyf
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whereas ho - (I;f) = I,((g7% - ho) - f).
Recall from Section 2.3 that there exists w, € W such that the condition:

Yaa((a,0))03((a,0) " = ¢F((a,wy))

holds for all @ € gAN A. Then for any Haar measure p of gA N A\ A, one can compose
the following morphisms of B-modules:
B Ig B IgA,A,u,wg B
Vi — Vo  — Vi
Therefore Iga 4,01y € EndB(Vf ) is uniquely defined up to a scalar of B3, because the
morphism Iy A 4., is, thanks to Proposition 2.7.
Consider now the smooth B[H]-module (pg, Ind (18)) where F is identified with
the centre of H. All the B[H]-modules V§ naturally embed in the latter because the
restriction of wg to F is ¢/B. Under this canonical identification for Vf , one has:

IgA,A”u,,UJg o Ig o pd(h) = pd(g : h) o gAzAvthg © Ig'

In other words Tga A0, © Iy € Hompa((pa, VE), (09, VE)) where p% : h— pa(g - h).

Again in Section 2.3, invertible Haar measures are defined as unit multiples of nor-
malised Haar measures. These exactly are the measures that can take unit values on
compact open subgroups. As the linear map I, is invertible, one easily deduces from
Proposition 2.7 that the previous endomorphism is invertible:

Lemma 3.1. If y1 is invertible, then Iga A w, © 1y € GLB(VE).

As a result of the lemma, the image of the set {Iy4 4w, © Iy | 1 invertible} through
the quotient map:

RED : GLg(V5) — GLg(VE)/B* = PGLg(VE)

is well defined. As already mentioned the map Iga 4w, © Iy is unique up to a scalar,
hence this image consists in a singleton; denote by M, the single element it contains.
Remark that M, does not depend on the choice of wy because HomB[H](Vﬁl, Vf) ~ B
once again by Propositon 2.7, and the set of invertible elements are those in B>, which
does correspond to the choice of an invertible Haar measure.

The proposition below allows to build Weil representations with coefficients in B.

Proposition 3.2. The map o5 : g € Sp(W) — M, € PGLg(V¥) is a group morphism
and defines a projective representation Vf of Sp(W). Using the fibre product construc-
tion, it lifts to a representation Wy yB of a central extension of Sp(W) by B> in the
following way:

w,B B

—~B B, v
Sp¢ByV§(W) A GLB(VE)

Sp(W) —2~PGLg(VE)
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—~B
where Sp¢B’V£s(W) = Sp(W) XPGLB(VB)GLB(VAB) is the fibre product defined by the group
morphisms og and RED, together with the projection maps denoted pp and Wy B

Proof. The only point that needs explanation is the claim about oz being a group morph-
ism. Let g and ¢’ be two elements in Sp(W). By definition, there exists an invertible
measure p, on gA N A\A and an element w, € W such that:

RED(IgA,A g0, © 1g) = My.

Respectively, one can write the same type of relation for My with some py and wy.
An explicit computation of the composed map Iy o Iy 4, Ay g gives the existence
of an invertible measure p on gg’A N gA\gA and an element w € W such that the
commutation relation:
Ig o Ig’A7Anu'g/7wg/ = IQQ/A:!]A##U © Ig

holds. In addition, the morphism:

B B
IgA,A”ug,w © IgglAnga%W E HOmB[H] (‘/gg/A7 VA)

is invertible because each one of the two is. Therefore Proposition 2.7 asserts the existence
of an invertible measure 145 on AN gg’A\gg'A and an element w,, € W such that:

I9A7Avﬂng o [gg/A7gA’/J‘1w = IgA7Ayugg/ 7wggl °

The claim hence follows by using the previous two relations and applying RED to:

(I!JAvA,/‘«ngg © Ig) S (IQ'A7A7M9/ 7wg/ o Igl)'
O

Remark 3.3. Actually this fibre product makes sense in the category of topological
groups in the following setting. Let B and VE be endowed with the discrete topology.
Then the compact-open topology on GLB(VE ) is generated by the prebasis of open sets
Sss = {g € GLg(VE) | gs = s’} for s and s’ in V. Similarly to [Tri20, Prop. 3.5],
one can prove RED and op are morphisms of topological groups. As a result of the
continuity, the fibre product is a locally profinite group for the product topology and
the representation Wy VB is smooth. However, there is an interesting alternative way
to prove it and that is developed in the next section. It illustrates the philosophy: any
problem related to an A-algebra B may be brought back to one directly involving A.

Denote by ¢ : GL A(Vf) — GLB(VE ) the group morphism induced by the extension
of scalars and the canonical identification V;f‘ B~ Vf coming from Corollary 2.6.

Theorem 3.4. The group morphism ¢p induces a morphism of central extensions:

65 (9, M) € Spyaya(W) s (g, @5(M)) € Spys yss (V).
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The image of g is a central extension of Sp(W) by ¢(A)* where ¢ is the structure
morphism ¢ : A — B. Furthemore, the following diagram commutes:

ww.A ,V'A

— A
Spya v a (W) —= GLA(VZ') .

l% l@s
WyB B

~B P
Spys,vs (W) —> GLg(V})

Proof. By definition (g, M) € Sp(W) x GL4(V3!) belongs to /S\[J)JQAJ/AA(W) if there exists
an invertible Haar measure p on gAN A\ A with values in A and an element w such that
M = IjaAuwo 1y Set 1B = o pu. Using the compatibiliy of Corollary 2.8, the equal-
ity ¢8(Iga,Auw) = Iga 4,8, holds and defines an isomorphism in HomB[H}(Vﬁl, VE).
Hence:

(M) = gA, A, B w © Iy

B
with p® invertible, that is (g, p(M)) € Spys ys(W).

The map be\l/g thus defined clearly is a morphism of central extensions. In addition, an
element (g, M) belongs to its kernel if and only if g = Idy and ¢p(M) = Idvf- However:

~A
{M € GLA(VZ) | (Idw, M) € Spyaya(W)} = {Aldya | A e AXY.

Indeed M must be of the form Iga A w0 Iy = Iaau0 = p({0}) x Idv;{‘ where p is an
invertible measure of the singleton {0}, so there exists A € B* such that M = Mdv;{"
Since qbg()\IdVAL\) = go(A)IdV}‘g, the group {(IdW,)\IdV;;\) | A € Ker(p)} ~ Ker(y) is the
kernel sought. The assertion on the image follows from the form of this kernel. O

Because of the previous compatibility, many problems over B reduce to those over
the minimal ring A. The corollary to the proposition below illustrates this philosophy:

Proposition 3.5. Let A and A’ be two self-dual subgroups of W. Let ®4 4 be an
isomorphism in HomA[H](V;(‘, VA‘}) Then ®4 4r induces an isomorphism of central ex-
tenstons: A A

(9, M) € Spr,VA“(W) = (9, ‘I)A,A'M‘I’Z}A/) € Spr,VA‘}(W)

compatible with the projections defining the fibre products. In particular, the equivalence
class of the representation Wy y A does not on depend A in the sense that:

D40 wyayallg, M)) o ol = WyA v 4 (9, 24,4 MD,,)

—~A
for all (g, M) € Spya ya(W).
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Proof. The existence of an isomorphism in Hom A[H](V}f‘, Vi) is a consequence of Pro-
position 2.7. One can consider for example any I4 4, as long as u is invertible. The
fact that ® 4 4 induces an isomorphism of central extensions is quite clear when writing
down the relations because ® 4 4/ is an isomorphism of A[H|-modules. O

From Theorem 3.4 and the proposition above, one can deduce the exact same result
for coefficients in any A-algebra B. Indeed, applying ¢ to the last relation yields:

Corollary 3.6. The equivalence class of Wy yB does not depend on A, in the sense
that for any other self-dual subgroup A’ of W, there exists an isomorphism (I);x,A/ n
HomB[H}(Vf, VE) - one can take ¢p(®a ar) for ezample — such that:

P’y a0 w'l/;B,Vf((gv M))o (‘I’/A,A')_l = WwB,Vf((gy Py 4 M( /A,A')_l))

~B
for all (g, M) € Sp¢B7V5(W).

4 The metaplectic group over A

The notations are those of Section 3. To quickly recall the context: let B be an A-algebra,
let A be a self-dual subgroup of W and V§ = indgH (¢8) be the smooth B[H]-module
built in Section 2.2, where 1/152 is an extension of 18 in the way of Lemma 2.3.

In Section 3, we constructed a projective representation og : Sp(W) — PGLB(VE ) of
the symplectic group and, in Proposition 3.2, we lifted it to a representation (Wwﬁ,va Vf )
of a central extension of Sp(W) by B>, namely:

—~B
W¢B7V1§ : Spr,Vf (W) — GLB(VE).

Recall that the group on the left-hand side is the fibre product in the category of groups
of the group morphisms o5 : Sp(W) — PGLs(V¥) and rRED : GLg(VF) — PGLg(V5),
together with the projection maps pg and Wy VB As a result of this construction, it is

a subgroup of Sp(W) x GLg(V%). In particular, these constructions make sense over A
itself, and Theorem 3.4 completes the picture relating the constructions over 4 and over
any A-algebra B, yielding a morphism of central extensions:

~ —A —B
OB : SPW\,VX‘(W) - Spr,VE(W)

compatible with the respective projection maps.

4.1 A bit of tolopolgy

This section will shed some light on Remark 3.3 by bringing topology into the construction
of Proposition 3.2. Endow B and Vf with the discrete topology. Then the open-compact
topology on GLg(V¥) is generated by the prebasis Ss ¢ = {M € GLg(VE) | Ms = s'}
for s and s’ running through V5.
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The group PGLg(V%) inherits the quotient topology, which is the finest making the
quotient map RED : GLg(V¥) — PGLg(V5) continuous. Recall from Proposition 3.4
that the projective representation op : Sp(W) — PGLg(V¥) was defined in terms of the
action of Sp(W) on H.

The complex case. The best-known feature comes when B is the field of complex
numbers. Endowing C with a structure of A-algebra amounts to fixing an embedding
¢ : A — C. Observe that all such embeddings have the same image in C, because £/Q
is a Galois extension. In particular, the image of the map A* — C* induced by ¢ does
not depend on the choice of ¢.

So when B = C and ¢ is fixed, the representation VE € Repc(H) is irreducible as an
application of Stone-von Neumann’s theorem [MVW87, Chap. 2, Th. 1.2] and :

. . . . o C
® wyeyc is the Weil representation of the metaplectic group Sp¢cjvf (W).

The complex theory asserts that the Weil representation is smooth and the metaplectic
group is a natural topological subgroup of Sp(W) x GL@(VE). To be more precise, the
metaplectic group is a locally profinite group. Regarding the smoothness condition, this
is equivalent to saying that the map Wye ye is continuous.

These topological properties are consequences of the continuity of the map o¢, which
really is the cornerstone of the theory; and the metaplectic group inherits a natural
topology as the fibre product in the category of topological groups of the continuous
group morphisms RED and oc.

—~A
Over A. By analogy, one calls Spd}A’VX\ (W) the metaplectic group over A. Referring
to Theorem 3.4, it is a subgroup of the metaplectic group because the group morphism:

N Sy —C
¢c : (9, M) € Spyaya(W) = (9, ¢c(M)) € Spye ye(W)
is injective.
Lemma 4.1. The map ¢c : M € GL4(V{) = ¢c(M) € GLc(VY), coming from the

scalar extension to C, is continuous and defines an homeomorphism onto its image.

Proof. The image of ¢¢ is endowed with the subspace topology from GL@(VE). The
map ¢¢ is continuous and injective, so it defines a bijection to its image, say G 4. Denote
¢ : G4 — GLA(V3Y) the inverse map. Then for all s and s’ in V!, one has:

(¢0) " (Ssw) = {gc(M) | M € GLa(VZ) and éc(M)(s @c 1) = s’ ®c 1}
= G.A N SS@@I,S’@@l
that is the trace of an open set. So (¢)1(Ss,s) is open in G4 and ¢, is continuous. [J

Of course, the embedding Sp(W) x GL4(V{') — Sp(W) x GL¢(VY) induced by ¢c is
an homeomorphism onto its image as well. As a result of the lemma, the subspace topo-
logy on Sp(W) x GL 4(V{!), inherited from that of Sp(W) x GL¢(VY) using the previous
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embedding, coincides with the usual product topology. Restricting this morphism to the
metaplectic group over A, which is a subgoup of Sp(W) x GL A(VA“), exactly yields ¢c.
Because of the homeomorphism property, one can identify the metaplectic group over A
and its image under ¢¢, resulting in:

—~A —~C
Corollary 4.2. The group Spr7VAA(W) s a topological subgroup of Splﬂc,Vg(W), the
inclusion being canonically given by Q/;(/C- In addition (E{; s an open embedding.

Proof. The fact that it is a topological subgroup follows from Lemma 4.1 and the sub-
sequent discussion. The map ¢¢ is open because its image is open in the metaplectic
group. Indeeed the first projection of the fibre product yields an exact sequence:

1-C*— S\ISEC,VE(W) — Sp(W) — 1.

Because K£/Q is a Galois extension, the image ¢(A*) of A* does not depend on ¢ and
always contains {+1}. As a result, the following diagram is commutative:

1 C* —— Spyeye (W) —— Sp(W) —— 1

4 %T IdsmmT
(W

—A
> Spyaya(W) —— Sp

—_
~
p
X
N

) —— 1

and the group é\I;:zA’VAA(W) contains the reduced metaplectic group gl\)iC,VE(W% that is
the derived group of the metaplectic group.

When F' is local non-archimedean, this is the unique subgroup of the metaplectic
group fitting into the exact sequence:

1— {£1} > @EWE(W) — Sp(W) — 1.

Furthermore this reduced metaplectic group is open in the metatplectic group, so the
claim follows because the metaplectic group over A contains it. When F' is finite, the
topology can just be ignored as these groups are finite and have discrete topolgy. O

As above, denote by ér\)igvg (W) the derived group of gf)igvg (W). When F is finite,
this group is the derived group of Sp(W). Except in the exceptional case F' = F3 and
dim(W) = 2, the symplectic group is perfect i.e. equal to its own derived subgroup.
When F' is local archimedean it is the so-called reduced metaplectic group, which is a
non-trivial extension of Sp(W) by {%£1}. Actually there exists a unique such (open)
subgroup in the metaplectic group. Regardless of what F' may be, we use brackets to
define the derived group:

—~A —~A —~A
Spya v (W) = [Spya ya(W), Spya ya(W)].

—~ —A —C
Recall that ¢¢ canonically identifies Sp¢A7VA4(W) with its image in Sp¢c7V§(W). It also
induces, by restriction, a map between the respective derived groups.
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Proposition 4.3. One has the following properties:

—~A
a) the map o4 is continuous and SplﬁA’Vf(W) is the fibre product in the category of
topological groups of the continuous morphisms RED and o 4;

—~A
b) the representation Wy A SP¢A,V;{‘(W) — GLA(V{Y) is smooth as this group
morphism is the second projection of the fibre product;

—A —C
c) the group SPwA,V;{‘(W) is open in SPwC,VE (W) and therefore the metaplectic group
over A is locally profinite;

— —~A —~C
d) the map ¢c restricts to an isomorphism Spya ya(W) ~ Spye ye(W) and when:

i) F is finite, it is the symplectic group except when F = TF3 and dim(W) = 2;

ii) F' is local non-archimedean, it is the reduced metaplectic group.

Proof. a) The map o 4 is continuous, because o¢ itself is, and one has:

oA = ¢cooc

where ¢¢c : PGL4(V{) — PGL¢(VY) is the continuous group morphism defined from
¢c by passing to the quotient. The fibre product of 04 and RED in the category of
topological groups defines a topological subgroup of Sp(W) x GL (V). In particular,
this fibre product is, as a group, the metaplectic group over A.

b) The projection maps are continuous by definition of the fibre product.

—~ —~A
c¢) As a direct consequence of ¢¢ being an open embedding, the group SPwA,v;‘ (W) is an
open subgroup of the metaplectic group, which is locally profinite. Hence it is a closed
subgroup, so the subspace topology is the locally profinite one.

—~A
d) The isomorphism follows considering the first projection p4 : SpryAA (W) — Sp(W).
This map is surjective, and so is pc. In addition one has the equality:

bco Q% = DA
Passing to derived groups yields:
—C
D(pc) : Spye v (W) = [Sp(W), Sp(W)].

It is an isomorphism in case i) and a surjective morphism of kernel {£1} for ii). But
through the identification given by ¢¢, one has the inclusion:

A —~C
Spr,V;‘“(W) - Spw,vg(W)

and D(pc) o q% is surjective. In case i), the previous inclusion is an equality and except
in the exceptional case mentioned the symplectic group is perfect. In case ii), this implies
the following inequality for the index of the quotient:

—~C —~A
[SPQZJC’VIE(W) : Sp’L/JA,VX\(W)] < 2.

It must be 2 as the reduced metaplectic group cannot be split over Sp(W). ]
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—~B
Over B. Call Spwsyf(W) the metaplectic group over B and define its derived group:

—~B —~B —~B
Spys v5(W) = [Spys v5 (W), Spys yi(W)].

As above, the morphism of central extensions of Theorem 3.4:

95 : (9 M) € Spa A (W) = (9, 65(M)) € Spys (W)

retricts to a morphism at the level of derived groups. As ¢g is continuous, it defines a
continuous map ¢g : PGL (V') — PGLg(VF) at the level of quotients. Then one has
the equality o = ¢5 o 04 and one deduces from Propostion 4.3 that o is continuous.

Proposition 4.4. One has the following properties:

—~B
a) the group Spd,rs,vf(W) is the fibre product in the category of topological group of
the continuous morphisms op and RED, its topology being the subspace topology in
Sp(W) x GLg(V);

—~B
b) the representation Wy B Spysys(W) — GLg(VE) is smooth as this group
morphism is the second projection of the fibre product;

~ —A —B _
c) the map ¢ : (9, M) € Spyaya(W) — (g9,08(M)) € Spysys(W) is an open
continuous map and therefore the metapletic group over B is locally profinite;

d) considering derived groups, the map q/bjg restricts to:

_a _B
i) a surjection Spyaya(W) — Spys ys(W) of kernel {1} and image iso-
morphic to Sp(W) if F' is local non-archimedean and char(B) = 2;

—A —B
i) an isomorphism SpryAat(W) ~ Spys vi(W) otherwise.

Proof. a) b) Obvious from the definition of fibre products and projections.

¢) This needs some explanation however. Once again when F is finite, the topology is
dicrete and the statement trivially holds. Suppose now that F' is local non-archimedean.
As a first observation, remark that the equality ¢p o Wy A = Wy B © ¢ holds.

Let v € Vf such that v® 41 € Vf is non-zero. Because of the previous equality, the

stabiliser of v ® 4 1 will be contained in the image of q% as a result of the following two
facts. First, one has :

wys y5(g, AM)(v®al) = AM(v©al)

—~B
for all (g, M) € Spys ys(W) and A € B*. Not much has been said so far. Second, the
—~B
surjectivy of p4 and pg onto Sp(W) implies that for all (g, M) € Sp¢B7V£(W), there
exists A € B* such that (g, \M) is in the image of 3;;.
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Combining the previous two facts, the stabiliser of v ® 4 1 must be included in the
image of ¢5. So the image of ¢B is open because the stabiliser of any element is open as
a consequence of Wy VB being smooth.

The image of ¢ is an open subgroup in the metaplectic group over B. If this subgroup
is a locally profinite group, then the metaplectic group will be too. Using Theorem 3.4,
one has an exact sequence:

1 Ker(ds) = Soppaya (W) % Tm(dg) — 1

where Ker(g?;g) = {(Idw,Nldya) | A € A and p(\) = 1} >~ Ker(A* — ¢(A)*) is
a discrete subgroup, so a closed subgroup. Thanks to Proposition 4.3 the metaplectic
group over A is locally profinite, so its quotient by the previous discrete subgroup is
locally profinite and ¢p factors through it, inducing an homeomorphism of topological
groups.

d) First of all, there is an induced map between derived subgroups:

—~. —~A B
D(¢5) : Spyaya(W) = Spys ys(W).

—~— —~A
But pg o D(¢p) = D(pa) is a surjective map Spy.a y-a(W) — [Sp(W), Sp(W)], which is
an isomorphism in case i) and has kernel {£1} in case ii) according to Proposition 4.3.
Therefore:

Spys (W) /Im(D(65))
is abelian. By minimality of the derived group, we must have Im(D(¢g)) = @SB7VIE(W).
Furthermore:
Ker(D(¢p)) = {(Idw, Aldy.) | A € A and ¢()) = 1} N @jA7Vf(W).
When F is finite, the group Ker(D(gfb\l/g)) = {(Idw, Idvf)} is trivial. When F' is local

non-archimedean, it is included in {(Idy, eIdex) | e € {£1}} ~ {£1}. But this kernel is
non-trivial if and only if ¢(—1) = ¢(1) =1 in B, that is ¢(2) = 0, and char(B) =2. O

‘s —~ A o B
Definition 4.5. Let ¢ : Spya ya(W) — Spys y5(W) be the restriction qﬁlg]S R}

This map will be used later on. Proposition 4.4 has already given some key properties
of this map: just to mention a few, it is an open map and its kernel is explicit.
4.2 Reduced cocycle for 4-algebras

One deduces from Proposition 4.4 that the metaplectic group over B either:

e contains the symplectic group as a subgroup, then char(B) = 2 or F is finite;

e does not contain the symplectic group as a subgroup, in which case F' is local non-
archimedean and char(B) # 2, and its derived group is canonically isomorphic to
the so-called reduced metaplectic group.

28



In practice, it is important to describe the explicit group law of the metaplectic group
for applications. In the first case for instance, it is useful to have a precise formula
for the embedding of the symplectic group inside the (split) metaplectic group. In the
second case, there are important subgroups that are known to be split, such as inverse
images of compact open subgroups, parabolic subgroups, Levi subgroups and unipotent
radicals. However, there is a priori no guarantee that these groups are split in the
reduced metaplectic even though they may be split in the metaplectic group. In order
to do computations, one needs to express the cocycle which controls the group law of
the reduced metaplectic group. This cocycle usually involves the so-called Weil factor,
which is ill-defined when the A-algebra B does not contain a square root of ¢q. This is
the reason why we develop a non-normalised version of it.

4.2.1 Non-normalised Weil factor over B

The definition of the non-normalised Weil factor, achieved over fields in [Tri20, Sec. 1.1],
generalises to A-algebras as explained below. Let X be a vector space over F' of finite
dimension m. Let p? be an invertible Haar measure of X with values in A.

Proposition 4.6. Let Q be a non-degenerate quadratic form on X. Then there exists a
unique non-zero element €2, (¥4 0 Q) in A such that for all f € C°(X,.A), one has:

/ / £y — D)9 Q@))du (1) A () = Qs (970 Q) / F (@) ().
XJX X

For any sufficiently small open compact subgroup K in X, the condition for smallness
being “Y(Q(u)) =1 for all u € K7, this factor explicitely reads:

a@toQ) = > @
zeK' /K
where K' = {y € X | Yu € K,v*(Q(y—u)—Q(y)) = 1} is a compact open subgroup too.

Proof. The existence of such an element 2,4 (¥ 0 Q) comes from the definition of the
non-normalised Weil factor over fields and from computation, as examined below.

Indeed, the ring A is naturally contained in its field of fractions K, and the measure
1 can be thought of as having values in K. So there exists [Tri20, Prop. 1.2] a non-zero
element 2,4 (¥ 0 Q) in K, which achieves the first equality of the statement. A direct
computation when f = 1x and ¥A(Q(K)) = 1 gives:

/X 1 (y — 2N Q@) du (1) = QU)K X 1 ()

where one easily checks from the definition that K’ is a compact open subgroup of X.
In addition it contains K. Applying u to the previous equality leads to:

QMA(l/’AOQ)XM (1g) = vol(K Z WAQ

€K' /K

where (1) = vol(K) € A* because y is invertible, resulting in the last equality. [J
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Let now u be a Haar measure of X with values in B. Denote ), the unique element
in B such that p = A, x 1B, where 4 = ¢ o u# is an invertible Haar measure. Applying
i to the equalities in the previous proposition yields:

Corollary 4.7. Let Q be a non-degenerate quadratic form on X. Then there exists a
unique element Q,(¥° o Q) in B such that for all f € C(X,B), one has:

/ / £y — 9B (Q@) dp(x)dpu(y) = 2w 0 Q) / f(@)dp(z).
XJX X

Furthermore:
(%0 Q) = A\ x ¢ (a0 Q)) .
When @ is a quadratic form on X, one denotes rad(Q) its radical. Observe that @
is non-degenerate if and only if rad(@Q)) = 0. The non-degenerate quadratic form Qpnq
associated to ) is the non-degenerate quadratic form induced by @ on X/rad(Q).

Definition 4.8. Let @ be a quadratic form on X. Let u be Haar measure of X/rad(Q)
with values in B. The non-normalised Weil factor is defined by:

e Q,(¥PoQ) = pu({0}) if Q is the zero quadratic form;
° Qu(wB 0Q):= Qu(v,/;B o Qnq) otherwise.

Lemma 4.9. One has :
Qa(toQ) e A”.
In particular for any invertible Haar measure p with values in B:
0 (P 0 Q) € BX.
Proof. Let K — C be an embedding of K into C and (¢ its restriction to .A. The factor
Q,4(¢¥* 0 Q) can be thought of as the factor €,c(1® 0 Q) = ¢c(Q,4(1* 0 Q)) where

u® = pc o pA is an invertible Haar measure. Then point f) of [Tri20, Prop. 1.5] gives:
1
Q¥ 0 Q) = wye (¥ 0 Q) x |p| 2

where w¢c(wc o @) is an 8th root oflunity and |p[,c = MC(K)(q%)k, with K a compact
open subgroup of X, a square root ¢2 of ¢ in C and an integer k € Z. So:

Q,e(¥° 0 Q) = (u°(K))*¢™.
Therefore QN.A(T,[}‘A 0Q)® = (WAK))B3q* € AX because pc is injective and Q-linear,

implying the result about the factor being invertible. Hence the second equality results
from applying ¢ and Corollary 4.7, given the fact that A\, € B*. O

Define for a in F* the quadratic form Q, : € F + ax? € F. Then the factor:

A _ s (4 © Qa)

a,b QMA (w.A o Qb)

does not depend on the choice of the invertible Haar measure 4, as the notation suggests.

One can define QaB » in the obvious way, either as a quotient of two non-normalised Weil
factors or as the image of the previous using the map ¢.

c AX
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4.2.2 Section ¢Z giving the cocycle

Let X be a lagrangian of W. In particular this provides an instance of a self-dual
subgroup in W. A nice section ¢ : Sp(W) — é\l/)ﬁAyA(W) of p4 is defined below. It is
nice in the sense that it will give the explicit group laé(v in the metaplectic group over A.

First of all, observe that, using the notation of Section 3, any section ¢ of p4 is given
by a family (uy)gespw) of measures where fi, is an invertible measure of gX N X\ X.
Namely it reads ¢ : g — (g, Igx,x,u,,0014). One defines the section ¢ mentioned above in
the following way. The stabiliser P(X) of X in Sp(W) is a maximal parabolic subgroup.
For g € Sp(W), let ugy be the invertible measure on gX N X\ X defined by:

Hg = Qf}detx(mm) X @1 Mﬁj
where:
o (wj)j=0..m is a system of representatives in Sp(W) for P(X)\Sp(W)/P(X);

e the element g = pyw;jps € P(X)w;P(X) with p; and p in P(X);

detx(p) = detp(p|x) where p|x € GL(X) ~ GL,,,(F);

gXﬂX\Xg w;X N X\X is induced by z € X = p;le € w; X N X\X;

e Qj(z) = 3(wjz,z) is the non-degenerate quadratric form on w;X N X\X;
e for any invertible p, set uﬁj = u(wA o Q;)~'p which does not depend on p.

See [Tri20, Sec. 3.5] to get a more detailed explanation about the previous definitions.
Exclude the exceptional case F' = F3 and dim(W) = 2 from now on.

Proposition 4.10. With the previous choice of pg, the section:
—~A
g €SpW) = (9, Igx X y1g0 © Iy) € Sy ya (W)

—~A
has values in Spryv),é\(W), except in the exceptional case F = F3 and dim(W) = 2. The
2-cocycle defined by this section:

&2 (g1,92) € SP(W) x Sp(W) = ¢ (g1)s7(92)s 7 (9192) ' € A

is trivial when F' is finite, and has image {£1} when F' is local non-archimedean.

Proof. Consider an embedding X — C and denote ¢ its restriction to A. The map:

bc : (9. M) € Sppaya (W) — (g, 6c(M)) € Spye ye (W)

and the compatibility ¢c(Iyx x .4,0) = Igx,x uc,0 from Corollary 2.8 where 1€ = pcop?,
leads to:

¢<C o gA(g) = (97 IgX,X,(pcOp,g,O © Ig)
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But the measure ¢c o py above is the one defined in [Tri20, Lem. 3.23|, and according

to [Tri20, Th. 3.27], the map &(/; o ¢4 is a section of pc whose associated cocycle is
trivial when F is finite, and has values in the reduced metaplectic group when F' is local
non-archimedean. The associated cocycle ¢€ is trivial when F is finite and has image
{1} when F is local non-archimedean. Using point d) of Proposition 4.3, the image of

—~A
¢A lies in Spya ya(W), except in the exceptional case F' = F3 and dim(W) = 2. In any

case, the map ¢ is injective so this defines a section of p4. In particular, it is a group
morphism when F is finite as a result of the cocycle ¢© being trivial. O

One easily deduces from the previous proposition and Proposition 4.4, the corollary:

— —~B
Corollary 4.11. The section B = ¢ o ¢* has values in Spys vB (W), except in the
exceptional case F' = Fs and dim(W) = 2. The 2-cocycle defined by this section:

(g1, 92) € SP(W) x Sp(W) — P (91)c" (92)s" (9192) " € B*

is trivial when F is finite or char(B) = 2, and has image {£1} otherwise.

Remark 4.12. In the exceptional case, the section ¢, resp. ¢, can still be defined.

However the derived group [Sp(W),Sp(WW)] is a strict subgroup of the symplectic group
Sp(W). So the image of the previous sections, which are again group morphisms, is just
a subgroup of the metaplectic group over A, resp. over B, that is isomorphic to Sp(W).

5 Families of Weil representations

—~ —~A —~B
Consider the map ¢5 : Spya ya(W) — Spys y5(W) of Definition 4.5. The exceptional
case F' = 3 and dim(W) = 2 needs separate treatment, which will be done as a quick

remark, so we exclude it from now on.
Let H be a closed subgroup of Sp(WW) and set:

HA :p;ll(H) and H? =py (H).

. - —~A
Denote by H# the intersection of H* and SpryX\(W). Recall that ¢ : A — B is the
structure morphism of the A-algebra B and consider the categories:

Repps(H*) = {(m,V) € Repg(H*) | 7((Idw, eldy4)) = p(€)Idy for e € {+1}}
and:
Repy(HB) = {(r, V) € Repg(H®) | =((1dyy, Aldy5)) = Mdy for A € B*}.
Proposition 5.1. The functor:
(m,V) € Rep;g(fls) — (mo gz/b;g,V) € Rep’B(ﬁA)

defines an equivalence of categories.
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Proof. This map is a functor and its inverse is given by the extension of scalars to B>,
that is for any (7, V") € Repjg(H*), the representation:

7+ (h,A) € H* x BX — M'(h) € GLg(V")
factorises as a representation of HB. Indeed, the surjective group morphism:
(h,A) € HA x B* = ¢p(h) x (Idw, Aldy5) € H®

is an isomorphism when F is finite and has kernel {((IdW,EIdVAL\), w(e)) | € € {£1}}

when F' is local non-archimedean. But Ker(7”) contains the kernel of the surjective map
above, that is it factorises as claimed. ]

Remark 5.2. The reason for proving such a result is to consider the “same” group for
any A -algebra B, which is particularly convenient when looking at scalar extension for
representations. For instance, the representation Wy y A ®aB € Repg(H A), which is the
scalar extension of Wyaya € Repg(ﬁ““), should be the “same” — the proposition below

making this “same” precise — representation as w,,s vE € Rep’B(ﬁ By,

Remark 5.3. In the exceptional case however, because the symplectic group Sp(W)
is isomorphic to SLg(F3), the derived group éBﬁA}VAL\(W) is a strict subgroup of the
symplectic group. One needs to replace ¢ by any morphism that embeds Sp(W) in the
metaplectic group over A, composed with ¢g. One can take for example the embeddings
¢A and B according to Remark 4.12.

From the previous proposition and Theorem 3.4, the following compatibility holds:

Proposition 5.4. The representations WyA v @A B and Wys yB are isomorphic, in

the sense that the canonical identification VA“ QB ~ Vf of Corollary 2.6 induces an
isomorphism in Rep’B(HA), namely:

(wyava @aB, Vi @4 B) = (wys ys o 65, VE).

Of course when R is a field endowed with an A-algebra structure, the representation
(wwR,va V/{%) is the modular Weil representation on W associated to ¥ and Vf”, in
the way they are defined in [MVW87, Chap. 2,II| for R = C and in [Tri20, Sec. 3| for
more general fields. Recall that in this situation Vf is the metaplectic representation
associated to ¥,

Dual pairs. When (Hj, Hs) is a dual pair in Sp(W), one may fix a model for the
WEeil representation and “embed” the lift of the dual pairs in the derived subgroup of
the metaplectic group over A through the natural multiplication map. One can also use
the lifts in the metaplectic group over A instead of the derived subgroup. This means
looking at the representation:

— A
WyB Y8 O¢B\ﬁ1AXﬁ2A € Repg(H1 X Hy )
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where the restriction I/J\IA X P/I\QA — gli\):;lA,VA‘\(W) is achieved using the natural multiplic-
ation map. Of course, when these lifts of dual pairs are split, one can always compose
with their splittings to get representations of H; or Hs themselves. It may happen that
splittings do not exist in the derived subgroup even if they do exist in the metaplectic
group itself [MVW8T7, Chap. 2, Rem. I1.9] and [Tri20, Sec. 4]. So one may switch hats
for tildas depending on the dual pair one wants to consider.

6 Features of the pair (GL{(F'), GL{(F))

Suppose F' is a local non-archimedean field. Let W be a symplectic space over F' of
dimension 2 and W = X + Y be a complete polarisation. For a € F*, define m, to be
the unique endomorphism in Sp(W) such that in the previous basis:

a O
m(l = 0 ail .
The pair (Hy, He) = (F*, F*) is defined by (a1, az) — Mgy MM, 1. Up to some smooth
characters of H; and Ha, the Weil representation wg, , is the “geometric” representation

(p, C°(F, B)) where Hy and Hj act respectively on the left and on the right on the locally
profinite space F. For f € C°(F,B) and aj,as € F*, it reads:

plar,az) - f:x € F s f(a] wag) € B.

6.1 Level 0 part

The category Repg(F*) is decomposed as a product of categories [ [, Repk (F*) where
the index k is also known as the level. In this picture, the level 0 subcategory has the
most direct descripition as it corresponds to representations with trivial action of the
biggest pro-p-subgroup K of F* which is, after choosing a uniformiser wg of F', the
group K = 1 + wpOp. In addition the isomorphism (k,u) € Z x OF + whu € F*
induces an isomorphism F*/K ~ Z x (Z/(q — 1)Z). Suppose from now on a choice
of uniformiser wp is made as well as a choice of a primitive (¢ — 1)-root of unity (;—;
in F. Hence in the free part Z is generated by wp and the torsion part Z/(q — 1)Z
is generated by (;—1. So the group algebra B[F* /K] is isomorphic to the B-algebra
B[X*!,Z]/(Z97! — 1), where wp corresponds to X and (;—1 to Z.

The level 0 category. As we are only interested in the level 0 part, we shall only
consider, for any V' € Repg(F*), the direct factor representation VE made of K-invariant
vectors. As for the representation (p;, C°(F, B)) given by the left F'*-action, this level 0
part is the subspace of bi-K-invariant functions:

CX(F,B)X = {f c C(F,B) | Vx € F and k € K, f(zk) = f(kz) = f(x)}.

In addition, the center 3° of the level 0 category Rep%(FX) is, because the group F* is
abelian, equal to the endomorphism ring of a minimal progenerator of RepOB(F *). Let
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(1x, B) be the free module B of rank 1 with trivial K-action. Then ind% (1x) is known
to be a progenerator of Rep%(F*). As a space of functions this also is C°(F* /K, B),
which is a free module of rank 1 over B[F'* /K] generated by the characteristic function
1. Therefore:

Endpx (indf; (1)) = Endpprx /g (indf (1x)) ~ B[F* /K]
thanks to ind% " (1x) being free of rank 1. So one can consider that the center 3° is

B[F* /K] ~ B[X*!,Z]/(Z97! — 1). Eventually, the level 0 category is equivalent to the
category of modules over the latter commutative ring.

6.1.1 Specialisation using the center

Morphism of the center. Let C be a commutative B-algebra. Let n € Homg_alg(z,o, C)
be a morphism of B-algebras. Of course n naturally endows C with a 3°-algebra structure.
In addition, any representation in Rep%(F*) is canonically endowed with a 3%-module
structure. By definition, this 3°-module structure commutes with the F*-action.

Definition 6.1. For any V € Rep%(F*), one defines the representation:
Vi, =V ®;0n € Repe(F™).
Examples. Recall 3° = B[X*!, Z]/(Z97! — 1). The following are easy claims:
e when B is a field and x : F*/K — B* is a character, the B-algebra morphism:
s P e BIXH, Z]/(Z71 — 1) = P(x(wr),x(C)) € B
provides the biggest x-isotypic quotient V, = V,. Furthermore:
Ker(ny) = (X — x(@wr), Z — x(¢))-
e when ¢ : B — B’ is a morphism of B-algebras, the B-algebra morphism:
W s P e BIX*, Z))(2071 — 1)  o(P) € BIX*, 2)/(277 — 1)
provides the extension of scalars V;,, =V ®p B'. Furthermore:

Ker(n,) = Ker(p) - 3°.

e let y be a character with values in 5%, let m a maximal ideal in B, and denote by
©m the quotient morphism B — B/m and xm = ¢n 0 X, then:

Vo) nem = Vi i i€ Vi, @5 (B/m) = (V @5 (B/m))y,,-

Therefore the representation V,, may be viewed as a family of representations
specialising at maximal ideals to biggest isotypic quotients, whereas it is less clear
how direct methods would give a good definition of an isotypic quotient over a ring.

Remark 6.2. Unlike the construction of the biggest isotypic quotient for irreducible
representations with coefficients in a field, the natural map V' + V,, is not surjective in
general. Of course if 7 is surjective, the previous map is a quotient map.
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6.1.2 Isotypic families of the Weil representation

Level 0 Weil representation. Instead of considering representations with coefficients
over different rings, this approach benefits from a greater flexbility when dealing with
the level 0 Weil representation C°(F,B)X. For example in the second situation with
¢ € Hompg_,15(B, B'), and thanks to the description as spaces of functions, one has:

(C(F, B)X)y,, = C2(F,B)".

Family for the trivial representation. Set V = C°(F,B)X and Vj = C*(F*,B)¥.
Recall there is an exact sequence of representations, that is given by the function restric-
tion to the closed set {0} in F', namely:

0=V —V—=15, -0

where 11§X is a free B-module of rank 1 endowed with the trivial F'*-action. Consider now
the ideal I; = (X —1,Z —1) in 3° and the morphism 7y : 30 — 3°/I;. As (18,),, =15,
and Vj is free of rank 1 over 3, it induces an exact sequence:

1% = Vip — 1% — 0.
The kernel of the map B — V;,, is (¢ — 1)B because:
(X=DV+Z-DV)nV =X -DW+(Z -1V + (¢ - DH.

So the following sequence is exact:

B/(g—1)B

0—1.%

=V =15, =0,

Denoting by 3 the image of 1o, in V;,,, the above sequence splits as b€ B b-a €V,
is a section of V;, — 1?X. So one has V;, ~ lf,/x(q_l)g @ 1?X.

The family for (X — ¢,Z — 1). It does not coincide with the family for the trivial
representation, except at the non-banal prime ideals. These are the prime ideals P in
B such that P NZ is generated by a prime ¢ dividing ¢ — 1. Denoting 7 the character
3 —3%/(X —q,Z — 1) and (xg, B) the character such that x5(¢) = 1 and x5(wr) = g,
one similarly has:

0—xp— Vy— 1?/}(171)8 — 0.

B/(q—1)B
Indeed on the one hand (X —1)1%, + (Z - 118, = (1 — )15, so (18,), = lF/X(q B,

On the other hand Vj is 3%-free so (Vo)y = xB- Denote by a and 3 the images of 1115 .0,
and 1o, in Vj,. The following computation helps identifying the (¢ — 1)-torsion:

X-1)B=(@-Na=(X-q)B+1—-q)B=(¢—1)p.

Then A € B — A(B—«) €V, factorises as a section of V;, — 11€/X(q_1)3

one has V,, ~ 1?,/&_1)6 D xB-

. As a consequence,

Remark 6.3. We interpret lii(q_l)lg as the greatest common quotient of lf,x and xg.
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More general families. One can look at any ideal in 3° to get more new families of
representations. For example, instead of only looking at characters with values 1 at (,
one can look at irreducible factors @ of Z9~! — 1 that are different from Z — 1, and
consider the ideal (P, Q) for an irreducible polynomial P in B[X*!].

Remark 6.4. Even when B is an integral domain, the previous classes of ideals (P, Q) are
not necessarily prime ideals in 3°. The irreducibility has therefore to be considered over
the field extension Frac(B)[Z]/(Q) of Frac(B) i.e. P is irreducible as a polynomial over
this bigger field. Furthermore, letting P be a non-unitary polynomial allows to consider
characters with coefficients in Frac(B) e.g. Zo[X*™']/(¢X — 1) = Q; when B = 7Z,.

6.2 Positive level part

Let k € N*. As a first observation, the level k parts of the representations C2°(F, B) and
C°(F*,B) are equal. Therefore the problem reduces to understand the level k part of
the regular representation. The same techniques as in the previous paragraph apply once
the center 3* of the category has been made explicit. The study will not be developped
in the present work for the sake of shortness. But in order to flag some differences, here
are some remarks below:

e if B does not have enough p-power roots of unity, the situation is more complicated
as no characters of level k may exist, that is there does not exist a group morphism
X : 14+ wrpOF — B* such that 1+ wl}‘ifrl(’)p C Ker(x) € 1 + @hOp;

e provided B as enough p-power roots of unity, the set of characters:
Charfy, = {x : 1 + wrOp — B* | x € Repf(1 + wrOr)}

is not empty and decomposes the category Replfg(FX) as product of categories
erChar’g Repj(F*), where each category factor is equivalent to Rep(F>).

In the first situation, the situation may be quite complicacted to write down, though this
first situation only occurs when F' has positive characteristic. Indeed, A is isomorphic
to Z[%, (p] in this case, whereas it is Z[%, (pe] for characteristic zero F. In the event of
B having enough p-power roots of unity, one can reduce the situation to the level 0 part
of CS°(F*, B) as it is isomorphic to the x-part of C2°(F*, B) for y € Charf. This latter
has been studied in the previous section.
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